تاثیر فعالیت ورزشی هوازی بر بیان ژن های FNDC5و PGC1-α در رت های نر دیابتی

نویسندگان

1 دانشجوی دکتری بیوشیمی و متابولیسم ورزشی، دانشکده تربیت بدنی و علوم ورزشی ، دانشگاه گیلان، رشت ، ایران

2 استاد فیزیولوژی ورزشی ، دانشکده تربیت بدنی و علوم ورزشی ، دانشگاه تهران، تهران ، ایران

3 دانشیار فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی ، دانشگاه تهران، تهران ، ایران

4 دانشجوی دکتری فیزیولوژی ، دانشکده تربیت بدنی و علوم ورزشی ، دانشگاه تهران، تهران ، ایران

چکیده

تغییر فنوتیپ بافت چربی بر اثر تمرین تئوری جدیدی است که احتمالاٌ در نتیجه­ی بیان ژن FNDC5 عضلانی ایجاد می­شود. هدف از پژوهش حاضر بررسی تاثیر فعالیت ورزشی هوازی بر بیان ژن­های FNDC5 و PGC-1α رت­های نر دیابتی است. در این مطالعه 18 سر رت نر دیابتی (12 هفته سن و با وزن 220-240 گرم) به 3 گروه تقسیم شدند: بلافاصله پس از فعالیت ورزشی هوازی (AE0) (6سر)، 2ساعت پس از فعالیت ورزشی هوازی (AE2) (6سر) و کنترل (C) (5سر). هر دو گروه فعالیت ورزشی هوازی (AE) با سرعت vo2max65-60% به مدت 40 دقیقه­ به فعالیت روی نوارگردان پرداختند. برای بررسی بیان نسبی mRNA ژن­های FNDC5 و PGC-1α بافت عضلانی از روش Real time PCR استفاده شد. از آزمون ANOVA و تست تعقیبی توکی برای تحلیل داده­ها استفاده و سطح معنی­داری 05/0 در نظر گرفته­ شد. تحلیل داده­ها نشان داد که بین گروه­های تحقیق در بیان ژن­PGC-1α تفاوت معنی­داری وجود دارد (01/0P≤). نتایج آزمون توکی نشان داد،بیان ژن­PGC-1α در گروه بلافاصله پس از فعالیت ورزشی هوازی (AE0) نسبت به گروه کنترل افزایش معنی­داری داشت (01/0P). با این حال، بین گروه­های تحقیق در بیان ژن­FNDC5 تفاوت معنی­داری وجود نداشت (01/0P>). بنابراین، نتایج این تحقیق نشان داد که فعالیت ورزشی هوازی علارغم بیان PGC1-α تاثیری بر بیان ژن FNDC5 در رت­های نر دیابتی ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Aerobic Exercise on PGC-1α and FNDC5 Gene Expression in Diabetic Male Rats

نویسندگان [English]

  • Mousa khalafi 1
  • Ali Asghar Ravasi 2
  • Rahman Soori 3
  • Mohammad Moradi 4
1 PhD Student of Biochemistry and Sport Metabolism, Faculty of Physical Education and Sport Sciences, Guilan University, Rasht, Iran
2 Professor of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
3 Associate Professor of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
4 PhD Student of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
چکیده [English]

Change in adipose tissue phenotype caused by exercise training is a new theory manifested as the result of muscle FNDC5 gene expression. The aim of the present study was to investigate the effect of aerobic exercise on PGC-1α and FNDC5 gene expression of diabetic male rats. In this study, 18 diabetic male rats (12 weeks old, weight 220-240 gr) were divided into three groups: immediately after aerobic exercise (AE0) (n=6), 2 hours after aerobic exercise (AE2) (n=6) and control (C) (n=5). Both aerobic exercise (AE) groups exercised on the treadmill with 60-65% VO2max for 40 minutes. Real time PCR method was used to examine the mRNA relative expression of FNDC5 and PGC-1α genes of muscle tissue. ANOVA and Tukey post hoc test were used to analyze data at significance level of 0.05. Data analysis showed a significant difference in PGC-1α gene expression among the groups (P≤0.01.) Tukey test showed that PGC-1α gene expression significantly increased in the immediately after aerobic exercise (AE0) group compared to the control group (P≤0.01). However, there were no significant differences in FNDC5 gene expression among the groups (P>0.01). Therefore, the results of this study showed that despite PGC-1α expression, aerobic exercise has no effects on the FNDC5 gene expression in diabetic male rats.

کلیدواژه‌ها [English]

  • aerobic exercise (AE)
  • Gene expression
  • FNDC5
  • PGC-1α
  • diabetic male rats
1.Boström P1, Wu JJedrychowski MPKorde AYe LLo JCRasbach KABoström EAChoi JHLong JZKajimura SZingaretti MCVind BFTu HCinti S,Højlund KGygi SPSpiegelman BM. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012 Jan 26;481(7382):PP:463-8.
2.Calcutt, N. A. (2004). Modeling diabetic sensory neuropathy in rats. In Pain Research . Humana Press:PP:55-65.
3.Choi, Y. K., Kim, M. K., Bae, K. H., Seo, H. A., Jeong, J. Y., Lee, W. K., ... & Park, K. G. (2013). Serum irisin levels in new-onset type 2 diabetes. Diabetes research and clinical practice, 100(1):PP: 96-101.
4.Coskun, O., Ocakci, A., Bayraktaroglu, T., & Kanter, M. (2004). Exercise Training Prevents and Protects Streptozotocin-Induced Oxidative Stress and. BETA.-Cell Damage in Rat Pancreas. The Tohoku journal of experimental medicine, 203(3):PP: 145-154.
5.Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., ... & Kahn, C. R. (2009). Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine, 360(15):PP: 1509-1517.
6.De Feyter, H. M., Praet, S. F., van den Broek, N. M., Kuipers, H., Stehouwer, C. D., Nicolay, K., ... & van Loon, L. J. (2007). Exercise training improves glycemic control in long-standing nsulin-treated type 2 diabetic patients.Diabetes Care, 30(10):PP: 2511-2513.
7.Høydal, Morten A., Ulrik Wisløff, Ole J. Kemi, and Øyvind Ellingsen. (2007). "Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training." European Journal of Cardiovascular Prevention & Rehabilitation 14, no. 6:PP: 753-760.
8.Huh, J. Y., Panagiotou, G., Mougios, V., Brinkoetter, M., Vamvini, M. T., Schneider, B. E., & Mantzoros, C. S. (2012). FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, 61(12):PP: 1725-1738.
9.Huh, J. Y., Mougios, V., Kabasakalis, A., Fatouros, I., Siopi, A., Douroudos, I. I., ... & Mantzoros, C. S. (2014). Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. The Journal of Clinical Endocrinology & Metabolism, 99(11):PP: 2154-2161.
10.Liang, H., & Ward, W. F. (2006). PGC-1α: a key regulator of energy metabolism. Advances in physiology education, 30(4):PP: 145-151.
11.Liu, J. J., Wong, M. D., Toy, W. C., Tan, C. S., Liu, S., Ng, X. W., ... & Lim, S. C. (2013). Lower circulating irisin is associated with type 2 diabetes mellitus.Journal of Diabetes and its Complications, 27(4):PP:365-369.
12.Mahajan, R. D., & Patra, S. K. (2013). Irisin, a Novel Myokine Responsible for Exercise Induced Browning of White Adipose Tissue. Indian Journal of Clinical Biochemistry, 28(1):PP:102-103.
13..Metcalfe L. (2004). Monitoring skills: diabetes. Nurse Prescriber, 1(2):PP:1-6.
14.Norheim, F., Langleite, T. M., Hjorth, M., Holen, T., Kielland, A., Stadheim, H. K., ... & Drevon, C. A. (2014). The effects of acute and chronic exercise on PGC‐1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS Journal, 281(3):PP:739-749.
15.Qian, S. W., Tang, Y., Li, X., Liu, Y., Zhang, Y. Y., Huang, H. Y., ... & Tang, Q. Q. (2013). BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proceedings of the National Academy of Sciences, 110(9):PP:798-807.
16.Pedersen, B. K., Åkerström, T. C., Nielsen, A. R., & Fischer, C. P. (2007). Role of myokines in exercise and metabolism. Journal of applied physiology,103(3):PP:1093-1098.
17..Pedersen, B. K. (2009). The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. The Journal of physiology, 587(23):PP: 5559-5568.
18Pedersen, B. K. (2011). Muscles and their myokines. The Journal of experimental biology, 214(2):PP: 337-346.
19.Pekkala, S., Wiklund, P. K., Hulmi, J. J., Ahtiainen, J. P., Horttanainen, M., Pöllänen, E., ... & Cheng, S. (2013). Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health?. The Journal of physiology, 591(21):PP:5393-5400.
20..Praet, S. F., & van Loon, L. J. (2009). Exercise therapy in type 2 diabetes.Acta diabetologica, 46(4):PP:263-278.
21.Praet, S. F., & van Loon, L. J. (2007). Optimizing the therapeutic benefits of exercise in type 2 diabetes. Journal of applied physiology, 103(4):PP:1113-1120.
22.Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., & Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92 (6):PP:829-839.
23.Rodgers, J. T., Lerin, C., Gerhart-Hines, Z., & Puigserver, P. (2008). Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS letters, 582(1):PP: 46-53.
24.Roca-Rivada, A., Castelao, C., Senin, L. L., Landrove, M. O., Baltar, J., Crujeiras, A. B., ... & Pardo, M. (2013). FNDC5/irisin is not only a myokine but also an adipokine. PloS one, 8(4):PP:e60563.
25.Soyal, S., Krempler, F., Oberkofler, H., & Patsch, W. (2006). PGC-1α: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes.Diabetologia, 49(7):PP:1477-1488.
26.Timmons, J. A., Baar, K., Davidsen, P. K., & Atherton, P. J. (2012). Is irisin a human exercise gene?. Nature, 488(7413):PP:9-10.
27.van Marken Lichtenbelt, W. D., Vanhommerig, J. W., Smulders, N. M., Drossaerts, J. M., Kemerink, G. J., Bouvy, N. D., ... & Teule, G. J. (2009). Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine, 360(15):PP: 1500-1508.
28.Zanuso, S., Jimenez, A., Pugliese, G., Corigliano, G., & Balducci, S. (2010). Exercise for the management of type 2 diabetes: a review of the evidence. Acta diabetologica, 47(1):PP:15-22.