تغییرپذیری ویژگی‌های ابعادی- ساختاری استخوانی موش‌های صحرایی نر ناشی از تمرین تناوبی با شدت بالا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم وزشی، دانشگاه تهران، تهران، ایران.

2 دکتری تخصصی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، گروه فیزیولوژی ورزشی، دانشگاه تهران، تهران، ایران

چکیده

 
تمرین ورزشی با فعال‌سازی مکانیسم‌های هورمونی، مکانیکی و عضلانی به افزایش تراکم، قدرت و استحکام استخوان کمک می‌کند. هدف پژوهش حاضر بررسی تغییرات عوامل ویژگی‌های ابعادی-ساختاری پس از 8 هفته تمرین تناوبی با شدت بالا (HIIT) است. تعداد 16 سر موش صحرایی نر نژاد ویستار با محدودۀ وزنی 50 ±250 گرم و سن 8 هفته به‌صورت تصادفی به دو گروه تجربی (8n=) و کنترل (8n=) تقسیم شدند. برنامۀ تمرینی شامل 4 دقیقه دویدن با شدت بالا 85 تا 90 درصد VO2max و دورهۀریکاوری 3 دقیقه‌ای با شدت 50 تا 60 درصد VO2max بود که سه روز در هفته، یک ساعت و به مدت 8 هفته اجرا شد. 24 ساعت پس از آخرین جلسۀ تمرینی، بعد از بی‌هوشی و کشتن حیوان، استخوان ران برداشته و در فرمالین قرار داده شد. ویژگی‌های ابعادی-ساختاری با استفاده از روش فوتومیکروسکوپ اندازه‌گیری شدند. از آزمون t- مستقل برای آنالیز داده‌ها استفاده شد. سطح معنا‌داری 05/0 P< درنظر گرفته شد. نتایج نشان داد 8 هفته تمرین HIIT تأثیر معنا‌داری بر وزن (270/0P=) و طول استخوان ران (290/0P=) نداشت. درحالی‌که نسبت حجم استخوان به حجم استخوان اسفنجی (004/0P=)، ضخامت اپی‌فیز (001/0P=)، متافیز (001/0P=) و تعداد ترابکولار (002/0P=) افزایش معنا‌داری داشت. به‌علاوه، ضخامت استوئید بین دو گروه تجربی و کنترل افزایش معنا‌داری نداشت (207/0P=). به‌نظر می‌رسد تمرین تناوبی با شدت بالا، احتمالاً با افزایش ضخامت استخوان ترابکولار و اسفنجی می‌تواند بر قدرت و استحکام استخوان تأثیر بگذارد.

کلیدواژه‌ها


عنوان مقاله [English]

Variability in Bone Histomorphometric Parameters of Male Rats Induced by High Intensity Interval Training

نویسندگان [English]

  • Siroos choobineh 1
  • Alireza Ghardashi Afousi 2
1 Associate Professor Department of Exercise Physiology, Faculty of physical Education and Exercise Science, University of Tehran, Tehran, Iran.
2 Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran
چکیده [English]

 
Training helps increase bone mass density, strength and rigidity by the activation of hormonal, mechanical and muscular mechanisms. The aim of this study was to investigate the changes of histomorphometric parameters after 8 weeks of high intensity interval training (HIIT). 16 male Wistar rats (mean weight 250 ± 50 g and 8 weeks of age) were randomly divided into control (n=8) and experimental groups (n=8). The training protocol consisted of 4 minutes of running with high intensity at 85-90% VO2max and 3 minutes of recovery with the intensity of 50-60% VO2max, which was performed 3 days per week, 1 hour for 8 weeks. 24 hours after the last training session, animals were anesthetized and sacrificed; then their femur was removed and fixed in formalin. Histomorphometric parameters were measured using a photomicroscope. Independent t test was used to analyze the data with a significance level of P<0.05. The results indicated that 8 weeks of HIIT had no significant effect on bone weight (P=0.270) and length (P=0.290). However, bone volume/trabecular bone volume ratio (P=0.004), thickness of ephyphysis (P=0.001), thickness of metaphysis (P=0.001) and trabecular number (P=0.002) significantly increased. Additionally, osteoid thickness did not significantly increased between experimental and control groups (P=0.207). It seems that high intensity interval training may affect bone strength and rigidity through increased trabecular and cancellous bone thickness.

کلیدواژه‌ها [English]

  • Bone
  • high intensity interval training
  • Histomorphometry
1.         Joo YI, Sone T, Fukunaga M, Lim SG, Onodera S. Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone. 2003;33(4):485-493.

2.         Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. Journal of Tissue Enginering. 2015;6:2041731415618342.

3.         Kohrt WM, Ehsani AA, Birge SJ, Jr. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. Journal of Bone Mineral Research. 1997;12(8):1253-1261.

4.         Wen HJ, Huang TH, Li TL, Chong PN, Ang BS. Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass. Osteoporos International. 2017;28(2):539-547.

5.         Gregov C, Šalaj S. The Effects of Different training modalities on bone mass: a Review. Kinesiology: International journal of fundamental and applied kinesiology. 2014;46(Supplement 1):10-29.

6.         Hsieh YF, Robling AG, Ambrosius WT, Burr DB, Turner CH. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. Journal of Bone Mineral Research. 2001;16(12):2291-2297.

7.         Milgrom C, Finestone A, Levi Y, Simkin A, Ekenman I, Mendelson S, et al. Do high impact exercises produce higher tibial strains than running? British journal of sports medicine. 2000;34(3):195-199.

8.         Milgrom C, Miligram M, Simkin A, Burr D, Ekenman I, Finestone A. A home exercise program for tibial bone strengthening based on in vivo strain measurements. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists. 2001;80(6):433-438.

9.         Vainionpaa A, Korpelainen R, Vihriala E, Rinta-Paavola A, Leppaluoto J, Jamsa T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos International. 2006;17(3):455-463.

10.       Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos International. 2002;13(2):97-104.

11.       Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Practice & Research: Clinical Rheumatology. 2009;23(6):741-753.

12.       Lertsinthai P, Charoenphandhu J, Suntornsaratoon P, Krishnamra N, Charoenphandhu N. Voluntary wheel running mitigates the stress-induced bone loss in ovariectomized rats. Journal of Bone Mineral Metabolism. 2015;33(3):261-269.

13.       Behringer M, Gruetzner S, McCourt M, Mester J. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. Journal of Bone Mineral Research. 2014;29(2):467-478.

14.       Turner CH, Robling AG. Exercises for improving bone strength. British journal of sports medicine. 2005;39(4):188-189.

15.       Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, et al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. Journal of Bone Mineral Research. 2014;29(10):2161-2181.

16.       Adami S, Gatti D, Braga V, Bianchini D, Rossini M. Site-specific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women. Journal of Bone Mineral Research. 1999;14(1):120-124.

17.       Warner SE, Shea JE, Miller SC, Shaw JM. Adaptations in cortical and trabecular bone in response to mechanical loading with and without weight bearing. Calcification Tissue International. 2006;79(6):395-403.

18.       Hamann N, Kohler T, Muller R, Bruggemann GP, Niehoff A. The effect of level and downhill running on cortical and trabecular bone in growing rats. Calcification Tissue International. 2012;90(5):429-437.

19.       Ooi FK, Norsyam WM, Ghosh AK, Sulaiman SA, Chen CK, Hung L-k. Effects of short-term swimming exercise on bone mineral density, geometry, and microstructural properties in sham and ovariectomized rats. Journal of Exercise Science & Fitness. 2014;12(2):80-7.

20.       Zhang L, Chen X, Wu J, Yuan Y, Guo J, Biswas S, et al. The effects of different intensities of exercise and active vitamin D on mouse bone mass and bone strength. Journal of Bone Mineral Metabolism. 2017;35(3):265-277.

21.       Notomi T, Okazaki Y, Okimoto N, Saitoh S, Nakamura T, Suzuki M. A comparison of resistance and aerobic training for mass, strength and turnover of bone in growing rats. European journal of applied physiology. 2000;83(6):469-74.

22.       Shimano RC, Yanagihara GR, Macedo AP, Yamanaka JS, Shimano AC, Tavares J, et al. Effects of high-impact exercise on the physical properties of bones of ovariectomized rats fed to a high-protein diet. Scandinavian Journal of Medicin Science Sports. 2018;28(5):1523-1531.

23.       Welch JM, Weaver CM, Turner CH. Adaptations to free-fall impact are different in the shafts and bone ends of rat forelimbs. Journal of applied physiology. 2004;97(5):1859-1865.

24.       Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Bone. 2014;66:15-25.

25.       Schroeder ET, Hawkins SA, Jaque SV. Musculoskeletal adaptations to 16 weeks of eccentric progressive resistance training in young women. Journal of strength and conditioning research / National Strength & Conditioning Association. 2004;18(2):227-235.

26.       Haram PM, Kemi OJ, Lee SJ, Bendheim MO, Al-Share QY, Waldum HL, et al. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovascular research. 2009;81(4):723-732.

27.       Hoydal MA, Wisloff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European journal of cardiovascular prevention and rehabilitation : official journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology. 2007;14(6):753-760.

28.       Hanson NA, Bagi CM. Alternative approach to assessment of bone quality using micro-computed tomography. Bone. 2004;35(1):326-333.

29.       Huang TH, Hsieh SS, Liu SH, Chang FL, Lin SC, Yang RS. Swimming training increases the post-yield energy of bone in young male rats. Calcification Tissue International. 2010;86(2):142-153.

30.       Hagihara Y, Fukuda S, Goto S, Iida H, Yamazaki M, Moriya H. How many days per week should rats undergo running exercise to increase BMD? Journal of Bone and Mineral Metabolism. 2005; 23(4): 289-294.

31.       Iwamoto J, Yeh JK, Aloia JF. Differential effect of treadmill exercise on three cancellous bone sites in the young growing rat. Bone. 1999;24(3):163-169.

32.       Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, Young MF, et al. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone. 2007;40(4):1120-1127.

33.       Iura A, McNerny EG, Zhang Y, Kamiya N, Tantillo M, Lynch M, et al. Mechanical loading synergistically increases trabecular bone volume and improves mechanical properties in the mouse when BMP signaling is specifically ablated in osteoblasts. PloS One. 2015;10(10):e0141345.

34.       Li W, Zhang Y, Xu X, Wang K, Ding W. Relationship between osteogenesis and angiogenesis in ovariectomized osteoporotic rats after exercise training. International Journal of Clinical and Experimental Pathology. 2017;10(12):11438-11449.

35.       Suominen TH, Korhonen MT, Alen M, Heinonen A, Mero A, Tormakangas T, et al. Effects of a 20-week high-intensity strength and sprint training program on tibial bone structure and strength in middle-aged and older male sprint athletes: a randomized controlled trial. Osteoporos International. 2017;28(9):2663-2673.

36.       Murray RC, Vedi S, Birch HL, Lakhani KH, Goodship AE. Subchondral bone thickness, hardness and remodelling are influenced by short-term exercise in a site-specific manner. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2001;19(6):1035-1042.

37.       Oh T, Tanaka S, Naka T, Igawa S. Effects of high-intensity swimming training on the bones of ovariectomized rats. Journal of Exercise Nutrition & Biochemistry. 2016; 20(3):39.

38.       Zhao R, Zhao M, Xu Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos International. 2015;26(5):1605-1618.