مقایسۀ تغییرات متابولیکی بازیکنان مرکزی و پیرامونی در مسابقۀ بسکتبال با استفاده از متابولومیکس

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری بیوشیمی و متابولیسم ورزشی، گروه فیزیولوژی ورزش، دانشکدۀ تربیت بدنی، دانشگاه تهران، تهران، ایران

2 استاد گروه فیزیولوزی ورزش دانشکده تربیت بدنی دانشگاه تهران

3 استادیار گروه بهداشت و طب ورزش دانشکدۀ تربیت بدنی، دانشگاه تهران، تهران، ایران

چکیده

 
در سال‌های اخیر پژوهشگران نشان داده‌اند بهترین روش تمرین، الگوبرداری از مسابقه است. از سوی دیگر، در بسکتبال پست‌های گوناگونی وجود دارد که نیازهای فیزیولوژیایی و تمرینی متفاوتی دارند. بنابراین، در این پژوهش تغییرات متابولیکی بازیکنان مرکزی و پیرامونی در یک مسابقۀ بسکتبال بررسی شده است. بدین‌منظور 5 بازیکن اصلی 14 تیم حاضر در مسابقات لیگ زیر 23 سال، ملی یا لیگ برتر سال 1396 به‌عنوان آزمودنی انتخاب شدند. نمونه‌های بزاق این بازیکنان پس از 40 دقیقه مسابقۀ بسکتبال (با توجه به قوانین FIBA) گرفته شد و با استفاده از روش متابولومیکس مقایسه شدند. از دستگاه HNMR برای انجام متابولومیکس و از نرم‌افزارهای مسترنوا و متابوانالیست برای آنالیز داده‌ها استفاده شد. آزمون‌های PCA و PLSDA نیز به‌عنوان آزمون‌های آماری استفاده شدند. نتایج نشان داد متابولیت‌های تورین، سوکسینیک اسید، سیتریک اسید و گلیسرول در بازیکنان پیرامونی و لاکتات و آلانین در بازیکنان مرکزی زیادتر است. ازاین‌رو می‌توان نتیجه گرفت تکیۀ بازیکنان پیرامونی بر مسیرهای هوازی و بازیکنان مرکزی بر مسیرهای بی‌هوازی زیادتر است. همچنین به‌نظر می‌رسد تولید گونه‌های فعال اکسیژن در بازیکنان پیرامونی زیادتر است.

کلیدواژه‌ها


عنوان مقاله [English]

A Comparison of the Metabolic Changes in Backcourt and Frontcourt Players in a basketball Game Using Metabolomics

نویسندگان [English]

  • Kayvan Khoramipour 1
  • abbas ali gaeini 2
  • Elham Shirzad 3
1 PhD in Exercise Biochemistry and Metabolism, Exercise Physiology Department, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
2 Proffesor, Exercise Physiology Department, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
3 Assistant Professor, Sport Medicine and Health Department, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
چکیده [English]

 
Recently, researchers have shown game simulation as the best way of training. On the other hand, there are various posts in basketball which have different physiological and training demands. Therefore, metabolic changes of backcourt and frontcourt players were investigated during a basketball game. 5 main players of 14 teams that participated in 2017 under 23 years of age, national or premier leagues were selected as the subjects. Players’ saliva samples were collected after 40 minutes of a basketball game (with regard to the FIBA roles) and compared using metabolomics. HMNR was used for metabolomics and MestReNova and Metaboanalyst were applied for data analysis. PCA and PLSDA were used for statistical tests. Results showed that taurine, succinic acid, citric acid and glycerol metabolites were higher in backcourt players and lactate and alanine in frontcourt players. Therefore, it can be concluded that backcourt and frontcourt plays relay more on aerobic and anaerobic pathways repetitively. Also, it seems that active oxygen species production is more in backcourt players.

کلیدواژه‌ها [English]

  • biochemical monitoring
  • metabonomics
  • Metabolite
  • metaboanalyst
1.            Hůlka K, Cuberek R, Bělka JJAG. Heart rate and time-motion analyses in top junior players during basketball matches. 2013;43(3):27-35.

2.            Torres-Ronda L, Ric A, Llabres-Torres I, de las Heras B, i del Alcazar XSJTJoS, Research C. Position-dependent cardiovascular response and time-motion analysis during training drills and friendly matches in elite male basketball players. 2016;30(1):60-70.

3.            Abdelkrim NB, Castagna C, Jabri I, Battikh T, El Fazaa S, El Ati JJTJoS, et al. Activity profile and physiological requirements of junior elite basketball players in relation to aerobic-anaerobic fitness. 2010;24(9):2330-42.

4.            Castagna C, Impellizzeri FM, Chaouachi A, Ben Abdelkrim N, Manzi V. Physiological responses to ball-drills in regional level male basketball players. Journal of sports sciences. 2011;29(12):1329-36.

5.            Abdelkrim NB, Castagna C, El Fazaa S, El Ati J. The effect of players' standard and tactical strategy on game demands in men's basketball. The Journal of Strength & Conditioning Research. 2010, 62-2652(10)24,10.

6.            Marcelino PR, Aoki MS, Arruda AF, Freitas CG, Mendez-Villanueva A, Moreira A. Does small-sided-games’ court area influence metabolic, perceptual, and physical performance parameters of young elite basketball players?. Biology of sport. 2016 Mar;33(1):37.

7.            Aoki MS, Ronda LT, Marcelino PR, Drago G, Carling C, Bradley PS, et al. Monitoring training loads in professional basketball players engaged in a periodized training program. The Journal of Strength & Conditioning Research. 2017;31(2):348-58.

8.            Conte D, Favero TG, Niederhausen M, Capranica L, Tessitore A. Physiological and technical demands of no dribble game drill in young basketball players. The Journal of Strength & Conditioning Research. 2015;29(12):3375-9.

9.            Conte D, Favero TG, Niederhausen M, Capranica L, Tessitore A. Effect of different number of players and training regimes on physiological and technical demands of ball-drills in basketball. Journal of sports sciences. 2016;34(8):780-6.

10.         Klusemann MJ, Pyne DB, Hopkins WG, Drinkwater EJ. Activity profiles and demands of seasonal and tournament basketball competition. International journal of sports physiology and performance. 2013;8(6):623-9.

11.         Puente C, Abián-Vicén J, Areces F, López R, Del Coso J. Physical and physiologicaldemands of experienced male basketball players during a competitive game. Journal of strength and conditioning research. 2017;31(4):956-62.

12.         Torres-Ronda L, Ric A, Llabres-Torres I, de las Heras B, i del Alcazar XS. Position-dependent cardiovascular response and time-motion analysis during training drills and friendly matches in elite male basketball players. The Journal of Strength & Conditioning Research. 2016;30(1):60-70.

13.         Arruda AF, Aoki MS, Freitas CG, Drago G, Oliveira R, Crewther BT, et al. Influence of competition playing venue on the hormonal responses, state anxiety and perception of effort in elite basketball athletes. Physiology & behavior. 2014;130:1-5.

14.         Leite GdS, Prestes J, Urtado CB, Marchetti PH, Padovani CR, Padovani CRP, et al. Objective and subjective variables for monitoring of different season cycles in basketball players. Revista Brasileira de Medicina do Esporte. 2012;18(4):229-33.

15.         Manzi V, D'ottavio S, Impellizzeri FM, Chaouachi A, Chamari K, Castagna C. Profile of weekly training load in elite male professional basketball players. The Journal of Strength & Conditioning Research. 2010;24(5):1399-406.

16.         Nunes JA, Moreira A, Crewther BT, Nosaka K, Viveiros L, Aoki MS. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program. The Journal of Strength & Conditioning Research. 2014;28(10):2973-80.

17.         Scanlan AT, Wen N, Tucker PS, Borges NR, Dalbo VJ. Training mode’s influence on the relationships between training-load models during basketball conditioning. International journal of sports physiology and performance. 2014;9(5):851-6.

18.         Alexiou H, Coutts AJ. A comparison of methods used for quantifying internal training load in women soccer players. International Journal of Sports Physiology and Performance. 2008;3(3):320-30.

19.         Lambert MI, Borresen J. Measuring training load in sports. International journal of sports physiology and performance. 2010 Sep;5(3):406-11.

20.         Krustrup P, Mohr M, Steensberg A, Bencke J, KjÆr M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Medicine and science in sports and exercise. 2006;38(6):1165-74.

21.         Bogdanis GCJFip. Effects of physical activity and inactivity onmuscle fatigue. 2012;3:142.

22.         Yan B, Jiye A, Wang G, Lu H, Huang X, Liu Y, et al. Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. 2009.

23.         Egan B, Hawley JA, Zierath JRJCm. SnapShot: exercise metabolism. 2016;24(2):342-. e1.

24.         Svensson MB, Ekblom B, Cotgreave IA, Norman B, Sjöberg B, Ekblom Ö, et al. Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet. Acta physiologica scandinavica. 2002;176(1):43-56.

25.         Pohjanen E, Thysell E, Jonsson P, Eklund C, Silfver A, Carlsson I-B, et al. A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum. Journal of proteome research. 2007;6(6):2113-20.

26.         Dunn WB, Bailey NJ, Johnson HEJA. Measuring the metabolome: current analytical technologies. 2005;130(5):606-25.

27.         Fiehn O. Metabolomics—the link between genotypes and phenotypes. InFunctional genomics 2002 (pp. 155-171). Springer, Dordrecht.

28.         Howe CC, Alshehri A, Muggeridge D, Mullen AB, Boyd M, Spendiff O, et al. Untargeted metabolomics profiling of an 80.5 km simulated treadmill ultramarathon. 2018;8(1):14.

29.         Abdelkrim NB, Castagna C, El Fazaa S, Tabka Z, El Ati JJTJoS, Research C. Blood metabolites during basketball competitions. 2009;23(3):765-73.

30.         Scanlan AT, Dascombe BJ, Reaburn P, Dalbo VJ. The physiological and activity demands experienced by Australian female basketball players during competition. Journal of Science and Medicine in Sport. 2012;15(4):341-7.

31.         Brown FF, Campbell ID, Kuchel PW, Rabenstein DC. Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS letters. 1977;82(1):12-6.

32.         Martin M, Legat B, Leenders J, Vanwinsberghe J, Rousseau R, Boulanger B, et al. PepsNMR for 1H NMR metabolomic data pre-processing. Analytica chimica acta. 2018;1019:1-13.

33.         Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic acids research. 2018 May 14;46(W1):W486-94.

34.         Huffman KM, Koves TR, Hubal MJ, Abouassi H, Beri N, Bateman LA, et al. Metabolite signatures of exercise training in human skeletal muscle relate to mitochondrial remodelling and cardiometabolic fitness. 2014;57(11):228.

35.         Pechlivanis A, Papaioannou KG, Tsalis G, Saraslanidis P, Mougios V, Theodoridis GAJJopr. Monitoring the response of the human urinary metabolome to brief maximal exercise by a combination of RP-UPLC-MS and 1H NMR spectroscopy. 2015;14(11):4610-2.

36.         Kim J, Banton S, Awad M, Yadalam A, Sher S, Tran V, et al. Training-related metabolic adaptations in American-style football participants. 2015;2(8):1048.

37.         Zafeiridis A, Chatziioannou AC, Sarivasiliou H, Kyparos A, Nikolaidis MG, Vrabas IS, et al. Global metabolic stress of isoeffort continuous and high intensity interval aerobic exercise: a comparative 1H NMR metabonomic study. 2016;15(12):4452-63.

38.         Berton R, Conceição MS, Libardi CA, Canevarolo RR, Gáspari AF, Chacon-Mikahil MPT, et al. Metabolic time-course response after resistance exercise: A metabolomics approach. 2017;35(12):1211-8.

39.         Mukherjee K, Edgett BA, Burrows HW, Castro C, Griffin JL, Schwertani AG, et al. Whole blood transcriptomics and urinary metabolomics to define adaptivebiochemical pathways of high-intensity exercise in 50-60 year old masters athletes. 2014;9(3):e92031.

40.         Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith DJAJoP-E, et al. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. 2014;307(7):E539-E52.

41.         Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, Mougios V, et al. 1H NMR-based metabonomic investigation of the effect of two different exercisesessions on the metabolic fingerprint of human urine. 2010;9(12):6405-16.

42.         Tiidus PM, Tupling AR, Houston ME. Biochemistry primer for exercise science: Human Kinetics; 2018.

43.         Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, VeselkovK, et al. 1H NMR study on the short-and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. 2012;12(1):470-80.

44.         Pohjanen E, Thysell E, Jonsson P, Eklund C, Silfver A, Carlsson I-B, et al. A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum. 2007;6(6):2113-20.

45.         Glynn EL, Piner LW, Huffman KM, Slentz CA, Elliot-Penry L, AbouAssi H, et al. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. 2015;58(10):2324-35.

46.         Ra S-G, Maeda S, Higashino R, Imai T, Miyakawa SJAP, Nutrition,, Metabolism. Metabolomics of salivary fatigue markers in soccer players after consecutive games. 2014;39(10):1120-6.