تأثیر دوازده هفته تمرین تناوبی با شدت بالا و تداومی با شدت بالا بر مقادیر VEGF، PEDF و PAI-1 بافت چربی احشایی و زیر پوستی رت‌های تغذیه‌شده با رژیم غذایی پرچرب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران.

2 دانشیار فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران.

3 دانشیار فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی ارومیه، ارومیه، ایران.

4 استادیار فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران

چکیده

 
هایپوکسی سلول‌های بافت چربی سبب القای مقاومت به انسولین و افزایش ریسک فاکتورهای قلبی ـ عروقی می‌شود. هدف پژوهش حاضر بررسی تأثیر تمرین تناوبی و تداومی شدید بر مقادیر VEGF، PEDF و PAI-1 بافت چربی احشایی و زیر پوستی رت‌های تغذیه‌شده با رژیم غذایی پرچرب بود. 20 سر رت نر نژاد ویستار 6 هفته‌ای به‌طور تصادفی به چهار گروه  کنترل سالم (Co-S)، کنترل چاق (Co-HFD)، تمرین تداومی با شدت بالا (HICT) و  تمرین تناوبی با شدت بالا (HIIT) تقسیم شدند. به‌جز گروه کنترل سالم، همۀ رت‌ها به مدت 12 هفته تحت رژیم غذایی پرچرب قرار گرفتند. تمرین HICT با شدت 75ـ70 درصد Vmax به مدت 80 دقیقه و HIIT با شدت 90ـ 85 درصد Vmax (13 تکرار تناوبی 4 دقیقه‌ای) 5 جلسه در هفته و به مدت 12 هفته اجرا شد. مقادیر پروتئین‌های چربی زیر پوستی و احشایی به روش الایزا اندازه‌گیری شد. داده‌ها با استفاده از آزمون t همبسته و ANOVA یکراهه تجزیه‌وتحلیل شد (05/0≥P). مدالیته‌های تمرینی HICT (002/0p=) و HIIT (001/0p=)؛ تغییرات وزنی ناشی از HFD را کنترل و کاهش معناداری در وزن رت‌ها ایجاد کردند. HIIT به‌طور معناداری مقادیر VEGF چربی زیر پوستی و احشایی و HICT به‌طور معناداری مقادیر VEGF چربی احشایی را افزایش داد (05/0P≤). همچنین، HICT و HIIT به‌طور معناداری PEDF چربی زیر پوستی و PAI-1 چربی احشایی را کاهش داد (05/0P≤). بهبود ویژگی‌های کیفی بافت چربی از جمله افزایش عروقی شدن این بافت، با تمرینات HIIT و HICT رخ می‌دهد که نقش مهمی در کنترل پاتوژنز چاقی به‌ویژه مقاومت به انسولین و اختلالات قلبی ـ عروقی بازی می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of 12 Weeks of High Intensity Interval Training and High Intensity Continuous Training on VEGF, PEDF and PAI-1 Levels of Visceral and Subcutaneous Adipose Tissues in Rats fed with High Fat Diet

نویسندگان [English]

  • aref habibi maleki 1
  • asghar tofighi 2
  • Firouz Ghaderi Pakdel 3
  • Javad Tolouei azar 4
1 M.Sc. of exercise physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
2 Associate Professor of exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
3 Associate Professor of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
4 Assistant Professor of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
چکیده [English]

 
Hypoxia of adipose tissue cells induces insulin resistance and increases cardiovascular risk factors. The aim of this study was to investigate the effect of high intensity interval training and continuous training on VEGF, PEDF and PAI-1 levels of visceral and subcutaneous adipose tissues in rats fed with high fat diet. 20 male Wistar rats (6 weeks old) were randomly divided into 4 groups: 1) heathy control (Co-S); 2) obese control (Co-HFD); 3) high intensity continuous training (HICT); 4) high intensity interval training (HIIT). Except for the Co-S group, all rats were subjected to high fat diet for 12 weeks. HICT with the intensity of 70-75% Vmax for 80 minutes and HIIT with 85-90% Vmax (13 repetitions, each 4 minutes) were performed for 12 weeks, 5 sessions per week. The amounts of subcutaneous and visceral adipose tissues proteins were measured by ELISA method. Data were analyzed by dependent t test and one-way ANOVA (P≤0.05). HICT (P=0.002) and HIIT (P=0.001) training modalities controlled weight changes caused by HFD and significantly reduced weight of rats. HIIT significantly increased the VEGF of visceral and subcutaneous adipose tissues and HICT significantly increased VEGF in visceral adipose tissue (P≤0.05). In addition, HICT and HIIT significantly reduced PEDF in subcutaneous adipose tissue and PAI-1 in visceral adipose tissue (P≤0.05). HIIT and HICT improve adipose tissue qualitative properties including vascularization which plays an important role in controlling the pathogenesis of obesity, especially insulin resistance and cardiovascular disorders.

کلیدواژه‌ها [English]

  • HICT
  • high fat diet
  • HIIT
  • PAI-1
  • PEDF
  • VEGF
1.            Kopelman PG. Obesity as a medical problem. Nature. 2000 Apr 6;404(6778):635-43. PubMed PMID: 10766250. Epub 2000/04/15. eng.

2.            Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circulation research. 2016;118(11):1786-807.

3.            Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature medicine. 2000;6(4):389.

4.            Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. The British journal of nutrition. 2004 Sep;92(3):347-55. PubMed PMID: 15469638. Epub 2004/10/08. eng.

5.            Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of clinical oncology. 2005;23(5):1011-27.

6.            Sung HK, Doh KO, Son JE, Park JG, Bae Y, Choi S, et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell metabolism. 2013 Jan 8;17(1):61-72. PubMed PMID: 23312284. Epub 2013/01/15. eng.

7.            Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW. Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell and tissue research. 2009 Jan;335(1):165-89. PubMed PMID: 18941783. Epub 2008/10/23. eng.

8.            Ma L-J, Mao S-L, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes. 2004;53(2):336-46.

9.            Kaji H. Adipose Tissue-Derived Plasminogen Activator Inhibitor-1 Function and Regulation. Comprehensive Physiology. 2016 Sep 15;6(4):1873-96. PubMed PMID: 27783862. Epub 2016/10/27. eng.

10.          Mutch NJ, Wilson HM, Booth NA. Plasminogen activator inhibitor-1 and haemostasis in obesity. The Proceedings of the Nutrition Society. 2001 Aug;60(3):341-7. PubMed PMID: 11681808. Epub 2001/10/30. eng.

11.          Tamura Y, Kawao N, Yano M, Okada K, Matsuo O, Kaji H. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice. Endocrinology. 2014 May;155(5):1708-17. PubMed PMID: 24605827. Epub 2014/03/13. eng.

12.          Famulla S, Lamers D, Hartwig S, Passlack W, Horrighs A, Cramer A, et al. Pigment epithelium-derived factor (PEDF) is one of the most abundant proteins secreted by human adipocytes and induces insulin resistance and inflammatory signaling in muscle and fat cells. International journal of obesity (2005). 2011 Jun;35(6):762-72. PubMed PMID: 20938440. Epub 2010/10/13. eng.

13.          He X, Cheng R, Benyajati S, Ma JX. PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases. Clinical science (London, England : 1979). 2015 Jun;128(11):805-23. PubMed PMID: 25881671. Pubmed Central PMCID: PMC4557399. Epub 2015/04/18. eng.

14.          Lakeland TV, Borg ML, Matzaris M, Abdelkader A, Evans RG, Watt MJ. Augmented expression and secretion of adipose-derived pigment epithelium-derived factor does not alter local angiogenesis or contribute to the development of systemic metabolic derangements. American journal of physiology Endocrinology and metabolism. 2014 Jun 15;306(12):E1367-77. PubMed PMID: 24760990. Epub 2014/04/25. eng.

15.          Bloor CM. Angiogenesis during exercise and training. Angiogenesis. 2005;8(3):263-71.

16.          Cullberg KB, Christiansen T, Paulsen S, Bruun J, Pedersen S, Richelsen B. Effect of weight loss and exercise on angiogenic factors in the circulation and in adipose tissue in obese subjects. Obesity. 2013;21(3):454-60.

17.          Lee HJ. Exercise training regulates angiogenic gene expression in white adipose tissue. Journal of exercise rehabilitation. 2018;14(1):16.

18.          Ahmadi-Kani Golzar F, Fathi R, Mahjoub S. High-fat diet leads to adiposity and adipose tissue inflammation: the effect of whey protein supplementation and aerobic exercise training. Applied Physiology, Nutrition, and Metabolism. 2018;44(3):255-62.

19.          Kolahdouzi S, Talebi-Garakani E, Hamidian G, Safarzade A. Exercise training prevents high-fat diet-induced adipose tissue remodeling by promoting capillary density and macrophage polarization. Life sciences. 2019;220:32-43.

20.          Duggan C, Tapsoba Jde D, Wang CY, McTiernan A. Dietary Weight Loss and Exercise Effects on Serum Biomarkers of Angiogenesis in Overweight Postmenopausal Women: A Randomized Controlled Trial. Cancer research. 2016 Jul 15;76(14):4226-35. PubMed PMID: 27417562. Pubmed Central PMCID: PMC5033683. Epub 2016/07/16. eng.

21.          Duggan C, Xiao L, Wang CY, McTiernan A. Effect of a 12-month exercise intervention on serum biomarkers of angiogenesis in postmenopausal women: a randomized controlled trial. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2014 Apr;23(4):648-57. PubMed PMID: 24501378. Pubmed Central PMCID: PMC3976800. Epub 2014/02/07. eng.

22.          Ghafari Homadini S, Asad MR, Bazgir B, Rahimi M. Effects of High Intensity Interval Training and Moderate-Intensity Continuous Training on VEGF Gene Expression in Visceral and Subcutaneous Adipose Tissues of Male Wistar Rats. Iranian Journal of Endocrinology and Metabolism. 2017;19(3):170-6. eng.

23.          Lee MO. Determination of the surface area of the white rat with its application to the expression of metabolic results. American Journal of Physiology-Legacy Content. 1929;89(1):24-33.

24.          Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Cardiovascular Prevention & Rehabilitation. 2007;14(6):753-60.

25.          Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific reports. 2017;7(1):204.

26.          Kemi OJ, Loennechen JP, Wisloff U, Ellingsen O. Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy. Journal of applied physiology. 2002.

27.          Lee S, Park Y, Dellsperger KC, Zhang C. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. American Journal of Physiology-Heart and Circulatory Physiology. 2011.

28.          Ostler JE, Maurya SK, Dials J, Roof SR, Devor ST, Ziolo MT, et al. The effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models. American Journal of Physiology-Heart and Circulatory Physiology. 2014.

29.          Hoydal MA, Wisloff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European journal of cardiovascular prevention and rehabilitation : official journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology. 2007 Dec;14(6):753-60. PubMed PMID: 18043295. Epub 2007/11/29. eng.

30.          Kordi MR, Nekouei A, Shafiee A, Hadidi V. The effect of eight weeks high intensity aerobic continuous and interval training on gene expression of vascular endothelial growth factor in soleus muscle of healthy male rats. Arak Medical University Journal. 2015;18(8):53-62.

31.          Ostler JE, Maurya SK, Dials J, Roof SR, Devor ST, Ziolo MT, et al. Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models. American journal of physiology Endocrinology and metabolism. 2014 Mar;306(6):E592-605. PubMed PMID: 24425761. Pubmed Central PMCID: PMC3948983. Epub 2014/01/16. eng.

32.          Lee S, Park Y, Dellsperger KC, Zhang C. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. American journal of physiology Heart and circulatory physiology. 2011 Aug;301(2):H306-14. PubMed PMID: 21602470. Pubmed Central PMCID: PMC3154670. Epub 2011/05/24. eng.

33.          Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep. 2017 Mar 16;7(1):204. PubMed PMID: 28303003. Pubmed Central PMCID: PMC5427962. Epub 2017/03/18. eng.

34.          Burniston JG. Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise. Proteomics. 2009 Jan;9(1):106-15. PubMed PMID: 19053138. Epub 2008/12/05. eng.

35.          Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? British Journal of Nutrition. 2008;100(2):227-35.

36.          Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123(2):186-94.

37.          Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S. Enhanced angiogenesis in obesity and in response to PPARγ activators through adipocyte VEGF and ANGPTL4 production. American Journal of Physiology-Endocrinology and Metabolism. 2008;295(5):E1056-E64.

38.          Ngo DT, Farb MG, Kikuchi R, Karki S, Tiwari S, Bigornia SJ, et al. Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation. 2014;130(13):1072-80.

39.          Sung H-K, Doh K-O, Son JE, Park JG, Bae Y, Choi S, et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell metabolism. 2013;17(1):61-72.

40.          Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, et al. Vascular rarefaction mediates whitening of brown fat in obesity. The Journal of clinical investigation. 2014;124(5):2099-112.

41.          Dawson D, Volpert O, Gillis P, Crawford S, Xu H-J, Benedict W, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285(5425):245-8.

42.          Crowe S, Wu LE, Economou C, Turpin SM, Matzaris M, Hoehn KL, et al. Pigment epithelium-derived factor contributes to insulin resistance in obesity. Cell metabolism. 2009;10(1):40-7.

43.          Duggan C, Xiao L, Wang C-Y, McTiernan A. Effect of a 12-month exercise intervention on serum biomarkers of angiogenesis in postmenopausal women: a randomized controlled trial. Cancer Epidemiology and Prevention Biomarkers. 2014;23(4):648-57.

44.          Duggan C, de Dieu Tapsoba J, Wang C-Y, McTiernan A. Dietary weight loss and exercise effects on serum biomarkers of angiogenesis in overweight postmenopausal women: a randomized controlled trial. Cancer research. 2016;76(14):4226-35.

45.          Garg N, Fay WP. Plasminogen activator inhibitor-1 and restenosis. Curr Drug Targets. 2007 Sep;8(9):1003-6. PubMed PMID: 17896951. Epub 2007/09/28. eng.

46.          Esmat S, Al Salam RA, Rashed L. Effect of exercise on plasminogen activator inhibitor-1 (PAI-1) level in patients with metabolic syndrome. J Am Sci. 2010;6(12):1374-80.

47.          Greyling A, Pieters M, Hoekstra T, Oosthuizen W, Schutte A. Differences in the association of PAI-1 activity with the metabolic syndrome between African and Caucasian women. Nutrition, Metabolism and Cardiovascular Diseases. 2007;17(7):499-507.