تأثیرات تمرینات تناوبی شدید (HIIT)، مقاومتی و استقامتی بر مقدار عامل رشد شبه‌انسولینی-1 و بیان miRNA-1 و miRNA-133a سرمی و عملکرد جسمانی مردان ورزشکار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدنی آذربایجان

2 دکتری گروه فیزیولوژی ورزشی، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

چکیده

 
هدف مطالعۀ حاضر بررسی تأثیر 8 هفته تمرین تناوبی شدید (HIIT)، مقاومتی و استقامتی بر آمادگی هوازی یا اکسیژن مصرفی بیشینه (VO2max)، قدرت بیشینه، عامل رشد شبه‌انسولینی-1 (IGF-I) و بیان miRNA-1 و miRNA-133a مردان ورزشکار جوان بود. در این مطالعۀ نیمه‌‌‌تجربی،  49 مرد ورزشکار جوان (20-18 ساله) انتخاب و به‌صورت تصادفی در چهار گروه همگن تمرین تناوبی شدید، مقاومتی، استقامتی و کنترل جایگزین شدند. سپس، 8 هفته (هر هفته 3 تا 4 جلسه) تمرین تناوبی شدید، تمرین استقامتی و تمرین مقاومتی انجام گرفت. نمونه‌های خونی، 24 ساعت قبل و بعد از مداخلۀ تمرینی جمع‌آوری شد. بیان  miRNA-1و miRNA-133a بعد از هر سه نوع تمرین کاهش یافت (05/0>P) و تفاوت معنا‌داری بین هر سه گروه مشاهده نشد (05/0 <P). همچنین، اکسیژن مصرفی بیشینه پس از 8 هفته تمرین استقامتی و تمرین تناوبی شدید به‌طور معنا‌داری افزایش یافت و افزایش در گروه تمرین تناوبی شدید به‌طور معنا‌داری بیشتر از هر سه گروه دیگر بود. غلظت عامل رشد شبه‌انسولینی-1 پس از اتمام دورۀ تمرینی در دو گروه تمرین مقاومتی و تمرین تناوبی شدید به‌طور معنا‌داری افزایش یافت. به‌علاوه، میزان پرس سینه تنها در گروه تمرین مقاومتی و میزان پرس پا و تودۀ خالص بدنی در هر سه گروه تمرینی افزایش یافت که افزایش آن در گروه تمرین مقاومتی بیشتر از دو گروه تمرین استقامتی و تمرین تناوبی شدید بود. به‌نظر می‌رسد این miRNAها بیومارکرهای خونی برای ارزیابی سازگاری با تمرینات ورزشی‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of High Intensity Interval Training (HIIT), Endurance Training and Resistance Training on Serum Insulin-Like Growth Factor-1 Level, miRNA-133a and miRNA-1 Expression and Physical Performance in Male Athletes

نویسندگان [English]

  • Karim Azali Alamdari 1
  • Mostafa Armanfar 2
1 Associate Professor, Department of Sport Sciences , Faculty of Education and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran
2 2. PhD, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
چکیده [English]

 
The aim of this study was to investigate the effect of eight weeks of high intensity interval training (HIIT), endurance training and resistance training on aerobic fitness (VO2max), maximal strength, insulin-like growth factor-1 (IGF-1), the expression of miRNA-1 and miRNA-133a in young male athletes. In this semi-experimental study, 49 young male athletes (18-20 years old) were selected and randomly assigned to four equal groups: HIIT, endurance training (EN), resistance training (RES) and control. Then, eight weeks (3 to 4 sessions per week) of HIIT, endurance training and resistance training were performed. Blood samples were collected 24 hours before and after the training intervention. miRNA-1 and miRNA-133a expressions decreased after three types of training (P<0.05). Also, there was no significant difference among the three groups (P>0.05). VO2max significantly increased after 8 weeks of HIIT and RES training. This increase in HIIT group was significantly higher than the other three groups. Concentration of IGF-1 increased significantly after the intervention in the EN and HIIT groups. In addition, the bench press increased only in the RES group and leg press and lean body mass (LBM) increased in all three training groups; this increase in the RES group was more than the EN and HIIT groups. It seems that these miRNAs are circulation biomarkers to evaluate adaptation to training.

کلیدواژه‌ها [English]

  • Endurance Training
  • high intensity interval training
  • Male Athletes
  • miRNA
  • resistance training
1.         Francaux M, Deldicque L. Exercise and the control of muscle mass in human. Pflügers Arch. 2018:1-15.

2.         Costill DL, Wilmore JH, Kenney WL. Physiology of sport and exercise. Physiology Of Sport And Exercise-9780736094092-66, 78. 2012.

3.         Maillard F, Pereira B, Boisseau N. Author’s Reply to Andreato et al.: Comment on:“Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis”. Sports Med. 2018:1-4.

4.         Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training. Sports Med. 2002;32(1):53-73.

5.         Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. cell. 2004;116(2):281-97.

6.         Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Sci. 2007;318(5858):1931-4.

7.         Small EM, O’Rourke JR, Moresi V, Sutherland LB, McAnally J, Gerard RD, et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci. 2010;107(9):4218-23.

8.         Sharma M, Juvvuna PK, Kukreti H, McFarlane C. Mega roles of microRNAs in regulation of skeletal muscle health and disease. Frontiers in physiology. 2014;5:239.

9.         Bye A, Røsjø H, Aspenes ST, Condorelli G, Omland T, Wisløff U. Circulating microRNAs and aerobic fitness–the HUNT-Study. PloS one. 2013;8(2):e57496.

10.       Nielsen S, Scheele C, Yfanti C, Åkerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J physiol. 2010;588(20):4029-37.

11.       Tonevitsky AG, Maltseva DV, Abbasi A, Samatov TR, Sakharov DA, Shkurnikov MU, et al. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC physiol. 2013;13(1):9.

12.       de Gonzalo-Calvo D, Dávalos A, Montero A, García-González Á, Tyshkovska I, González-Medina A, et al. Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J app physiol. 2015;119(2):124-34.

13.       McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J app physiol. 2007;102(1):306-13.

14.       Mishima Y, Abreu-Goodger C, Staton AA, Stahlhut C, Shou C, Cheng C, et al. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes dev. 2009.

15.       Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem. 2007;282(17):12363-7.

16.       Wahl P, Mathes S, Köhler K, Achtzehn S, Bloch W, Mester J. Acute metabolic, hormonal, and psychological responses to different endurance training protocols. Horm Metab Res. 2013;45(11):827-33.

17.       Rubin MR, Kraemer WJ, Maresh CM, Volek JS, Ratamess NA, Vanheest JL, et al. High-affinity growth hormone binding protein and acute heavy resistance exercise. Med Sci Sports Exerc. 2005;37(3):395-403.

18.       Widdowson WM, Healy M-L, Sönksen PH, Gibney J. The physiology of growth hormone and sport. Growth Horm IGF Res. 2009;19(4):308-19.

19.       Eliakim A, Nemet D, Zaldivar F, McMurray RG, Culler FL, Galassetti P, et al. Reduced exercise-associated response of the GH-IGF-I axis and catecholamines in obese children and adolescents. J App Physiol. 2006;100(5):1630-7.

20.       Russell AP, Lamon S, Boon H, Wada S, Güller I, Brown EL, et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short‐term endurance training. J physiol. 2013;591(18):4637-53.

21.       Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. American J Physiol Endocrinol Metab. 2008;295(6):E1333-E40.

22.       Keller P, Vollaard NB, Gustafsson T, Gallagher IJ, Sundberg CJ, Rankinen T, et al. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J app physiol. 2010;110(1):46-59.

23.       Banzet S, Chennaoui M, Girard O, Racinais S, Drogou C, Chalabi H, et al. Changes in circulating microRNAs levels with exercise modality. J app physiol. 2013;115(9):1237-44.

24.       Siahkouhian M, Khodadadi D, Shahmoradi K. Effects of high-intensity interval training on aerobic and anaerobic indices: Comparison of physically active and inactive men. Sci Sports. 2013;28(5):e119-e25.

25.       Dwyer GB, Davis SE. ACSM's health related physical fitness assessment manual: Lippincott Williams & Wilkins; 2008.

26.       Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PloS one. 2014;9(2):e87308.

27.       Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat genet. 2006;38(2):228.

28.       van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008;24(4):159-66.

29.       Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev biol. 2016;410(1):1-13.

30.       Margolis LM, Rivas DA. Potential role of microRNA in the anabolic capacity of skeletal muscle with aging. Exerc sport sci rev. 2018;46(2):86-91.

31.       Gundersen K. Excitation‐transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev. 2011;86(3):564-600.

32.       Pareja-Galeano H, Sanchis-Gomar F, García-Giménez JL. Physical exercise and epigenetic modulation: elucidating intricate mechanisms. Sports med. 2014;44(4):429-36.

33.       Kirby TJ, McCarthy JJ, Peterson CA, Fry CS. Synergist ablation as a rodent model to study satellite cell dynamics in adult skeletal muscle.  Skeletal Muscle Regeneration in the Mouse: Springer; 2016. (10): 43-52.

34.       Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, et al. Reciprocal regulation of microRNA-1 and IGF-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120(23):2377.

35.       Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PloS one. 2009;4(5):e5610.

36.       Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J app physiol. 2010;110(2):309-17.

37.       Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol genomics. 2011;43(11):665-73.

38.       McGee SL. Exercise and MEF2–HDAC interactions. App Physiol Nutr Metab. 2007;32(5):852-6.

39.       Xu T, Liu Q, Yao J, Dai Y, Wang H, Xiao J. Circulating microRNAs in response to exercise. Scand j med sci sports. 2015;25(2):e149-e54.

40.       Aoi W, Ichikawa H, Mune K, Tanimura Y, Mizushima K, Naito Y, et al. Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Frontiers in physiol. 2013;4:80.