تأثیر چهار هفته تمرین پلایومتریک بر میزان هم‌فعالی عضلات موافق و مخالف اندام تحتانی دختران فعال در مراحل مختلف پرش عمقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار فیزیولوژی ورزشی، گروه تربیت بدنی، دانشگاه فرهنگیان، تهران، ایران

2 استاد فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه خوارزمی، تهران، ایران

3 استاد فیزیولوژی ورزشی، گروه تربیت بدنی، دانشکدة علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

4 استاد فیزیوتراپی، دانشکده توانبخشی ، دانشگاه علوم پزشکی تهران ، ایران.

چکیده

 
زنان ورزشکار به‌دلیل هم‌فعالی کمتر بیشتر از مردان دچار آسیب‌دیدگی لیگامنت‌های زانو می‌شوند. هدف پژوهش حاضر تعیین اثر 4 هفته تمرین پلایومتریک بر میزان هم‌فعالی عضلات اندام تحتانی دختران فعال در مراحل مختلف پرش عمقی بود. تعداد 20 نفر از دانشجویان دختر تربیت بدنی (میانگین سن 63/0±8/21 سال، قد 05/0±64/1 متر، وزن 26/9± 98/56 کیلوگرم) به‌صورت تصادفی به دو گروه تجربی پلایومتریک (ده نفر) و کنترل (ده نفر) تقسیم شدند. گروه تجربی، تمرین پلایومتریک را 4 هفتة متوالی هر هفته دو جلسه انجام داد. در پیش‌آزمون و پس‌آزمون، الکترومیوگرافی سطحی از عضلات درشت‌نی قدامی، دوقلوی داخلی، دوسررانی و راست‌رانی به‌عمل آمد. میزان هم‌فعالی عضلات ران و ساق پای برتر در حین 3 مرحله پرش عمقی از ارتفاع 20 سانتی‌متر محاسبه شد. از آنالیز کوواریانس برای بررسی اثر تمرین در سطح معناداری 05/0p≤ استفاده شد. نتایج تحلیل کوواریانس تک‌متغیره با کنترل اثر پیش‌آزمون نشان داد که بین گروه تجربی و کنترل از لحاظ پس‌آزمون هم‌فعالی عضلات ران و ساق پا به‌ترتیب در مرحلة 2 (پیش فعالیت 14/ 0P= و 07/0= P)، مرحلة 3 (تماس 41/0 = P و 11/0= P) و مرحلة 4 (پرواز 65/0= P و 12/0= P) تفاوت معناداری دیده نشد. در گروه پلایومتریک میزان هم‌فعالی عضلات ران، روند افزایشی و عضلات ساق روند کاهشی را نشان داد. حرکات پلایومتریک رو به عقب فعالیت عضلات خلفی پا را افزایش دهد و به ثبات ACL کمک کند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of 4 Weeks of Plyometric Training on Coactivation of Antagonist and Agonist Muscles in Lower Limb of Active Girls during Different Phases of Drop Jump

نویسندگان [English]

  • Somayeh Ahmadabadi 1
  • Hamid Rajabi 2
  • Reza Gharakhnloo 3
  • Saeed Talebian Moghadam 4
1 Assistant Professor of Exercise Physiology, Department of Physical Education, Farhangian University, Tehran, Iran.
2 Professor of Exercise Physiology, Faculty of Sport Sciences, Kharazmi University, Tehran, Iran.
3 Professor of Exercise Physiology, Department of Physical Education, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.
4 Professor of Physiotherapy, Faculty of Physical Therapy, Tehran University of Medical Sciences, Tehran, Iran
چکیده [English]

 
Female athletes are more likely to have knee ligament injuries than men due to less coactivation. The aim of this study was to determine the effect of 4 weeks of plyometric training on the coactivation level of the lower limb muscles of active girls in different phases of drop jump. 20 female physical education students (mean age: 21.8±0.63 years, height: 1.64± 0.05 m, weight: 56.98± 9.26 kg) were randomly divided into two groups: experimental plyometrics (n=10) and control (n=10). The experimental group performed plyometric training twice a week for four consecutive weeks. In pretest and posttest, surface electromyography was performed on tibialis anterior, medial gastrocnemius, biceps femoris and rectus femoris. The coactivation level of dominant thigh and shin muscles was calculated during 3 phases of drop jump from 20 cm height. Analysis of covariance was used to investigate the effect of training at the significance level of P≤0.05. The results of univariate analysis of covariance with controlling the pretest effect showed no significant differences between experimental and control groups in posttest coactivation of thigh and shin muscles in phase 2 (pre-activity, P=0.14 and P=0.07), phase 3 (contact, P=0.41 and P=0.11) and phase 4 (fly, P=0.65 and P=0.12). In the plyometric group, the coactivation level of thigh and shin muscles showed increasing and decreasing trends respectively. Backward plyometric movements increase the activity level of leg dorsal muscles and help the ACL stability.

کلیدواژه‌ها [English]

  • active girls
  • coactivation
  • drop jump
  • electromyography
  • plyometric training
1.            Rezaimanesh D, Amiri-Farsani P, Saidian S. The effect of a 4 week plyometric training period on lower body muscle EMG changes in futsal players. Procedia-Social and Behavioral Sciences. 2011;15:3138-42.
2.            Lopes JC, Palomares EM, Rizzo DT. Training of Shock (Pliometry) in Combat Modalities. Weber Educational Research & Instructional Studies. 2017;3(1):732-6.
3.            Frontera WRea. Exercise in rehabilitation medicine: Human Kinetics; 1999.
4.            Pousson M, Amiridis I, Cometti G, Van Hoecke J. Velocity-specific training in elbow flexors. European journal of applied physiology and occupational physiology. 1999;80(4):367-72.
5.            Wilkerson GB, Colston MA, Short NI, Neal KL, Hoewischer PE, Pixley JJ. Neuromuscular changes in female collegiate athletes resulting from a plyometric jump-training program. Journal of Athletic Training. 2004;39(1):17.
6.            M S, A H. Evaluation of extra and intra muscular neural adaptation after isokinetic strenght training in lower limb. Research on Sport Sciences. 2010;293(7):129-41.
7.            Wright J, Ball N, Wood L. Fatigue, H/Q ratios and muscle coactivation in recreational football players. Isokinetics and Exercise Science. 2009;17(3):161-7.
8.            de Oliveira CF, Soares DP, Bertani MC, Rodrigues LJ. Effects of Fast-Walking on Muscle Activation in Young Adults and Elderly Persons. Journal of Novel Physiotherapy and Rehabilitation. 2017; January(20):12-9.
9.            Suzuki M, Shiller DM, Gribble PL, Ostry DJ. Relationship between cocontraction, movement kinematics and phasic muscle activity in single-joint arm movement. Experimental Brain Research. 2001;140(2):171-81.
10.         Najafi M, Najafi S, Talebian s. Assessment of motor units recruitment at the knee extensor muscles. Modern Rehabilitation. 2010;4(3):48-52.
11.         Coombs R, Garbutt G. Developments in the use of the hamstring/quadriceps ratio for the assessment of muscle balance. J Sports Sci Med. 2002;1(3):56-62.
12.         Dedinsky R, Baker L, Imbus S, Bowman M, Murray L. EXERCISES THAT FACILITATE OPTIMAL HAMSTRING AND QUADRICEPS CO-ACTIVATION TO HELP DECREASE ACL INJURY RISK IN HEALTHY FEMALES: A SYSTEMATIC REVIEW OF THE LITERATURE. Int J Sports Phys Ther. 2017;12(1):3.
13.         Jung HC, Lee S, Seo MW, Song JK. Isokinetic assessment of agonist and antagonist strength ratios in collegiate taekwondo athletes: a preliminary study. Sport Sciences for Health. 2017;13(1):175-81.
14.         Marquez G, Alegre LM, Jaen D, Martin-Casado L, Aguado X. Sex differences in kinetic and neuromuscular control during jumping and landing. Journal of musculoskeletal & neuronal interactions. 2017;17(1):409-16.
15.         Hurd WJ, Chmielewski TL, Snyder-Mackler L. Perturbation-enhanced neuromuscular training alters muscle activity in female athletes. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2006;14(1):60-9.
16.         Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. Journal of the American Academy of Orthopaedic Surgeons. 2000;8(3):141-50.
17.         Hewett TE, Zazulak BT, Myer GD, Ford KR. A review of electromyographic activation levels, timing differences, and increased anterior cruciate ligament injury incidence in female athletes. British journal of sports medicine. 2005;39(6):347-50.
18.         Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE. The Relationship of Hamstrings and Quadriceps Strength to Anterior Cruciate Ligament Injury in Female Athletes. Clin J Sport Med. 2009;19(1):3-8.
19.         Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. Journal of athletic training. 2002;37(1):71.
20.         T A, M K, M T. Alternate activity of medial and lateral gastrocnemius muscles during a sustained sub maximal isometric plantar flexion. Contemporary Studies on Sport Management. 2012;3(2):19-32.
21.         Hanaki S, McCaw ST. A Comparison Of The Lower Extremity Kinematics Between One-And Two-leg Landings. Medicine & Science in Sports & Exercise. 2005;37(5):S66.
22.         Bazzucchi I, Riccio ME, Felici F. Tennis players show a lower coactivation of the elbow antagonist muscles during isokinetic exercises. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2008;18(5):752-9.
23.         Latash ML. Muscle coactivation: definitions, mechanisms, and functions. J Neurophysiol. 2018;120(1):88-104.
24.         Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of plyometric training on muscle-activation strategies and performance in female athletes. Journal of athletic training. 2004;39(1):24.
25.         Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes: decreased impact forces and increased hamstring torques. The American journal of sports medicine. 1996;24(6):765-73.
26.         Petushek EJ, Fauth ML, Hsu BE, Vogel C, Lutsch B, Feldmann CR, et al. The Effect of Resistance and Plyometric Training on Hamstring and Quadriceps Activation During Simulated Sports Movement. The Journal of Strength & Conditioning Research. 2011;25:S8-S9.
27.         Mehdipour A, Ferdowsi M, Alijani A, Goharpey S. A study of electromyography of lower extremities and comparison of effects of plyometric and isotonic weight training. Human Movement. 2008;9(2):103-6.
28.         Wikstrom EA, Tillman MD, Schenker S, Borsa PA. Failed jump landing trials: deficits in neuromuscular control. Scandinavian journal of medicine & science in sports. 2008;18(1):55-61.
29.         Schmid S, Moffat M, Gutierrez GM. Effect of knee joint cooling on the electromyographic activity of lower extremity muscles during a plyometric exercise. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2010;20(6):1075-81.
30.         Ruan M, Li L. Approach run increases preactivation and eccentric phases muscle activity during drop jumps from different drop heights. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2010;20(5):932-8.
31.         Ahmadabadi S, Rajabi H, Gharakhanlo R, Talebian S. The effect of fatique due to plyometric training on activity pattern of rectus femoris muscle in different phases of deep jump on active girl. Journal of Modern Rehabilitation. 2014;8(4):11-20.
32.         Sankey SP, Jones PA, Bampouras T. Effects of two plyometric training programmes of different intensity on vertical jump performance in high school athletes. Serbian journal of sports sciences. 2008;2(4):123-30.
33.         Freriks B, Hermens H, Disselhorst-Klug C, Rau G. The recommendations for sensors and sensor placement procedures for surface electromyography. Seniam. 1999;8:13-54.
34.         Di Giminiani R, Scrimaglio R. Center of gravity height calculation and average mechanical power during jump performance. Italian Journal of Sport Sciences. 2006;13:78-84.
35.         Häkkinen K, Alen M, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, et al. Muscle CSA, Force Production, and Activation of Leg Extensors during Isometric and Dynamic Actions in Middle-Aged and Elderly Men and Women. Journal of Aging and Physical Activity. 1998;6(3):232-47.
36.         Konrad P. The abc of emg. A practical introduction to kinesiological electromyography. 2005;1:30-5.
37.         Reyment C, Bonis M, Lundquist J, Tice BS. Effects of a four week plyometric training program on measurements of power in collegiate hockey players. 2006.
38.         Impellizzeri FM, Rampinini E, Castagna C, Martino F, Fiorini S, Wisloff U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br J Sports Med. 2008;42(1):42-6.
39.         Poomsalood S, Pakulanon S. effects of 4-week plyometric training on speed, agility, and leg muscle power in male university basketball players: a pilot study. Kasetsart J(Soc Sci). 2015;36:598-606.
40.         Begalle RL, DiStefano LJ, Blackburn T, Padua DA. Quadriceps and hamstrings coactivation during common therapeutic exercises. Journal of athletic training. 2012;47(4):396-405.
41.         Herrero JA, Izquierdo M, Maffiuletti NA, Garcia-Lopez J. Electromyostimulation and plyometric training effects on jumping and sprint time. International journal of sports medicine. 2006;27(7):533-9.
42.         Baratta R, Solomonow M, Zhou B, Letson D, Chuinard R, D'ambrosia R. Muscular coactivation: the role of the antagonist musculature in maintaining knee stability. The American journal of sports medicine. 1988;16(2):113-22.
43.         Arabantzi F, Papadopoulos C, Prassas S, Komsis G, Gourgoulis V, editors. Electromyographic (EMG) activity of lower extremity musculature during drop jumping from different heights. ISBS-Conference Proceedings Archive; 2000.
44.         Viitasalo JT, Salo A, Lahtinen J. Neuromuscular functioning of athletes and non-athletes in the drop jump. European journal of applied physiology and occupational physiology. 1998;78(5):432-40.
45.         Fu SN, Hui-Chan CW. Modulation of prelanding lower-limb muscle responses in athletes with multiple ankle sprains. Medicine and science in sports and exercise. 2007;39(10):1774-83.
46.         Ambegaonkar JP. A comparison of knee muscle activation and knee joint stiffness between female dancers and basketball players during drop jumps: The University of North Carolina at Greensboro; 2007.
47.         Jones SL, Caldwell GE. Mono-and biarticular muscle activity during jumping in different directions. J Appl Biomech. 2003;19(3):205-22.
48.         Kuruganti U, Parker P, Rickards J, Tingley M. Strength and muscle coactivation in older adults after lower limb strength training. International journal of industrial ergonomics. 2006;36(9):761-6.
49.         Ruas CV, Brown LE, Lima CD, Haff GG, Pinto RS. Different Muscle Action Training Protocols on Quadriceps-Hamstrings Neuromuscular Adaptations. Int J Sports Med. 2018;39(05):355-65.
50.         S Avrillon FH, G Guilhem Between-muscle differences in coactivation assessed using elastography. J Electromyogr Kinesiol. 2018;43:88 - 94.
51.         Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. Journal of applied physiology. 1992;73(3):911-7.
52.         Carcia CR, Martin RL. The influence of gender on gluteus medius activity during a drop jump. Physical Therapy in Sport. 2007;8(4):169-76.