بررسی اثر خستگی موضعی عضلات چهارسررانی بر طیف فرکانس الکترومایوگرافی عضلات اندام تحتانی در حرکت آبدولیوچاگی در مردان نخبه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 استادیار، دانشکدۀ علوم تربیتی و روانشناسی، گروه تربیت بدنی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استادیار فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی

4 دانشجوی کارشناسی ارشد، دانشکدۀ علوم تربیتی و روانشناسی، گروه تربیت بدنی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

 
طیف فرکانس الکترومایوگرافی از شاخص‌های مهم در شناسایی میزان خستگی در عضلات است. هدف از پژوهش حاضر بررسی اثر خستگی موضعی عضلات چهارسررانی بر طیف فرکانس الکترومایوگرافی عضلات اندام تحتانی در حرکت آبدولیوچاگی در مردان نخبه بود. 14 تکواندوکار مرد با میانگین سنی 74/1 ± 50/24 سال با حداقل سه سال سابقۀ شرکت در مسابقات کشوری به‌صورت داوطلبانه و هدفمند با هماهنگی هیأت تکواندو استان اردبیل انتخاب شدند. از سیستم الکترومایوگرافی بدون سیم با 8 جفت الکترود سطحی دوقطبی برای ثبت فعالیت الکترومایوگرافی (نرخ نمونه‌برداری: 1000 هرتز) عضلات اندام تحتانی طی حرکات آبدولیوچاگی استفاده شد. از آزمون آماری تی ‌همبسته به‌منظور بررسی اختلاف درون‌گروهی استفاده شد (05/0≥P). نتایج نشان داد طیف فرکانس الکترومایوگرافی عضلۀ پهن داخلی (042/0=P، 93/0=d)، پهن خارجی (044/0=P، 90/0=d)، راست‌رانی (003/0=P، 18/1=d)، دوسررانی (020/0=P، 13/1=d)، نیمه‌وتری (029/0=P، 94/0=d) و سرینی میانی (023/0=P، 06/1=d) بعد از اعمال خستگی در مقایسه با قبل از اعمال خستگی کاهش معنا‌داری را نشان داد. نتایج نشان داد خستگی موضعی عضلات چهارسررانی، کاهش طیف فرکانس الکترومایوگرافی عضلات مفصل ران و سرینی میانی را در پی داشته است. اگرچه در عضلات درشت‌نئی قدامی و دوقلو این نتیجه به‌دست نیامد، این تفاوت را می‌توان به اختلافات موجود در بین عضلات از نظر رفتار حرکتی نسبت داد. به همین دلیل به مربیان و بازیکنان توصیه می‌شود به تمریناتی که سبب افزایش استقامت عضلات چهارسررانی و همسترینگ و سرینی میانی می‌شود، توجه داشته باشند.

کلیدواژه‌ها


عنوان مقاله [English]

An Investigation of the Effect of Quadriceps Fatigue on Electromyography Frequency Spectrum in the Lower Limb Muscles during Apdoliochagi in Elite Men

نویسندگان [English]

  • Shahram Kardan 1
  • Mohsen Barghamadi 2
  • Roghaye Afroonde 3
  • Mohammad Abdollahpour 4
1 Master of Science Student of Sport Physiology, Department of Physical Education and Sport Sciences, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran‌
2 Assistant Professor, Faculty of Educational Sciences and Psychology, Department of Physical Education, University of Mohaghegh Ardabili, Ardabil, Iran.
3 Assistant Professor, Faculty of Educational Sciences and Psychology, Department of Physical Education, University of Mohaghegh Ardabili, Ardabil, Iran.
4 MSc Student, Faculty of Educational Sciences and Psychology, Department of Physical Education, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

 
The frequency spectrum of electromyography is one of the important indicators to identify the amount of fatigue in the muscles. The aim of this study was to evaluate the effect of quadriceps fatigue on the electromyography frequency spectrum in lower limb muscles in elite men during the Apdoliochagi. 14 male taekwondo players (mean age of 24.50±1.74 years) with at least 3 years of participation in national competitions were voluntarily and purposively selected with coordination of the taekwondo board of Ardabil province. A wireless electromyography system with 8 pairs of bipolar surface electrodes was used to record the electromyography activity of lower limb muscles during the Apdoliochagi (sample rate: 1000 Hz). Paired t test was used to analyze within-group differences (P≤0.05). Results showed a significant decrease in the frequency spectrum of electromyography in vastus medialis (P=0.042, d=0.93),vastus lateralis (P=0.044, d=0.90), rectus femoris (P=0.003, d=1.18), biceps femoris (P=0.020, d=1.13), semi tendentious (P=0.029, d=0.94) and gluteus medius (P=0.023, d=1.06) after fatigue compared with the period before fatigue. The results showed a significant decrease in the frequency spectrum of electromyography in muscles of the hip and gluteus medius after quadriceps fatigue. Although such results were not obtained in the muscles of tibia anterior and gastrocnemius, this difference can be attributed to the differences in muscle mobility in terms of motor behavior. So, coaches and players are recommended to focus on those exercises which increase endurance of quadriceps, hamstring and gluteus medius.

کلیدواژه‌ها [English]

  • apdoliochagi
  • electromyography
  • elite taekwondo player
  • Frequency spectrum
1.            Altarriba-Bartes A, Drobnic F, Til L, Malliaropoulos N, Montoro JB, Irurtia A. Epidemiology of injuries in elite taekwondo athletes: two Olympic periods cross-sectional retrospective study. BMJ open. 2014;4(2):e004605.
2.            Kazemi M, Waalen J, Morgan C, White AR. A profile of Olympic taekwondo competitors. Journal of sports science & medicine. 2006;5(CSSI):114.
3.            Palomo AC, Soriano BSC, Palazón FJR, De Baranda MDPS. Effect of age category on the flexibility profile in young taekwondo athletes. Revista de Artes Marciales Asiáticas. 2018;13(2s):34-6.
4.            Chen C-Y, Jing Dai I, Chen F, Chou K-M, Chang C-K. Reliability and validity of a dual-task test for skill proficiency in roundhouse kicks in elite taekwondo athletes. Open access journal of sports medicine. 2015;6:181.
5.            Buśko K, Nikolaidis PT. Biomechanical characteristics of Taekwondo athletes: kicks and punches vs. laboratory tests. Biomedical Human Kinetics. 2018;10(1):81-8.
6.            Łastowiecka E, Bugajska J, Najmiec A, Rell-Bakalarska M, Bownik I, Jędryka-Góral A. Occupational work and quality of life in osteoarthritis patients. Rheumatology international. 2006;27(2):131-9.
7.            Viikari-Juntura E. Risk factors for upper limb disorders. Implications for prevention and treatment. Clinical orthopaedics and related research. 1998(351):39-43.
8.            English C, Maclaren W, Court‐Brown C, Hughes S, Porter R, Wallace W, et al. Relations between upper limb soft tissue disorders and repetitive movements at work. American journal of industrial medicine. 1995;27(1):75-90.
9.            James CP, Harburn KL, Kramer JF. Cumulative trauma disorders in the upper extremities: reliability of the postural and repetitive risk-factors index. Archives of physical medicine and rehabilitation. 1997;78(8):860-6.
10.         Cook T, Rosecrance J, Zimmermann C, Gerleman D, Ludewig P. Electromyographic analysis of a repetitive hand gripping task. International journal of occupational safety and ergonomics. 1998;4(2):185-200.
11.         Duque J, Masset D, Malchaire J. Evaluation of handgrip force from EMG measurements. Applied ergonomics. 1995;26(1):61-6.
12.         West W, Hicks A, Clements L, Dowling J. The relationship between voluntary electromyogram, endurance time and intensity of effort in isometric handgrip exercise. European journal of applied physiology and occupational physiology. 1995;71(4):301-5.
13.         Bartuzi P, Roman-Liu D, Tokarski T. A study of the influence of muscle type and muscle force level on individual frequency bands of the EMG power spectrum. International Journal of Occupational Safety and Ergonomics. 2007;13(3):241-54.
14.         Allen D, Westerblad H. Role of phosphate and calcium stores in muscle fatigue. The Journal of physiology. 2001;536(3):657-65.
15.         Lorist MM, Kernell D, Meijman TF, Zijdewind I. Motor fatigue and cognitive task performance in humans. The Journal of physiology. 2002;545(1):313-9.
16.         Kallenberg LA, Schulte E, Disselhorst-Klug C, Hermens HJ. Myoelectric manifestations of fatigue at low contraction levels in subjects with and without chronic pain. Journal of electromyography and kinesiology. 2007;17(3):264-74.
17.         Cardozo AC, Gonçalves M, Gauglitz AC. Spectral analysis of the electromyograph of the erector spinae muscle before and after a dynamic manual load-lifting test. Brazilian journal of medical and biological research. 2004;37(7):1081-5.
18.         Cardozo AC, Gonçalves M. Effect of load level on the EMG spectra of longissimus thoracis muscle during isometric fatiguing contractions. Electromyogr Clin Neurophysiol. 2010;50(2):75-85.
19.         Winter DA. Biomechanics and motor control of human movement: John Wiley & Sons; 2009.
20.         Roman-Liu D, Konarska MJJoE, Kinesiology. Characteristics of power spectrum density function of EMG during muscle contraction below 30% MVC. 2009;19(5):864-74.
21.         Mesin L, Cescon C, Gazzoni M, Merletti R, Rainoldi AJJoE, Kinesiology. A bi-dimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue. 2009;19(5):851-63.
22.         Lauriti L, Motta LJ, de Godoy CHL, Biasotto-Gonzalez DA, Politti F, Mesquita-FerrariRA, et al. Influence of temporomandibular disorder on temporal and masseter muscles and occlusal contacts in adolescents: an electromyographic study. 2014;15(1):123.
23.         De Felício CM, Ferreira CLP, Medeiros APM, Da Silva MAMR, Tartaglia GM, Sforza CJJoE, et al. Electromyographic indices, orofacial myofunctional status and temporomandibular disorders severity: a correlation study. 2012;22(2):266-72.
24.         Solomonow M, Baten C, Smit J, Baratta R, Hermens H, D'Ambrosia R, et al. Electromyogram power spectra frequencies associated with motor unit recruitment strategies. 1990;68(3):1177-85.
25.         Larsson B, Kadi F, Lindvall B, Gerdle BJJoe, kinesiology. Surface electromyography and peak torque of repetitive maximum isokinetic plantar flexions in relation to aspects of muscle morphology. 2006;16(3):281-90.
26.         Bilodeau M, Goulet C, Nadeau S, Arsenault AB, Gravel DJEjoap, physiology o. Comparison of the EMG power spectrum of the human soleus and gastrocnemius muscles. 1994;68(5):395-401.
27.         Wakeling JM, Rozitis AIJJoEB. Spectral properties of myoelectric signals from different motor units in the leg extensor muscles. 2004;207(14):2519-28.
28.         Serrao FV, Cabral CMN, Bérzin F, Candolo C, Monteiro-Pedro V. Effect of tibia rotation on the electromyographical activityof the vastus medialis oblique and vastus lateralis longus muscles during isometric leg press. Physical Therapy in Sport. 2005;6(1):15-23.
29.         Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of electromyography and Kinesiology. 2000;10(5):361-74.
30.         de Sèze MP, Cazalets J-R. Anatomical optimization of skin electrode placement to record electromyographic activity of erector spinae muscles. Surgical and Radiologic Anatomy. 2008;30(2):137-43.
31.         Farahpour N, Jafarnezhadgero A, Allard P, Majlesi M. Muscle activity and kinetics of lower limbs during walking in pronated feet individuals with and without low back pain. Journal of Electromyography and Kinesiology. 2018;39:35-41.
32.         Coqueiro KRR, Bevilaqua-Grossi D, Bérzin F, Soares AB, Candolo C, Monteiro-Pedro V. Analysis on the activation of the VMO and VLL muscles during semisquat exercises with and without hip adduction in individuals with patellofemoral pain syndrome. Journal of Electromyography and Kinesiology. 2005;15(6):596-603.
33.         Masuda K, Masuda T, Sadoyama T, Inaki M, Katsuta S. Changes in surface EMG parameters during static and dynamic fatiguing contractions. Journal of electromyography and kinesiology. 1999;9(1):39-46.
34.         Cifrek M, Tonković S, Medved V. Measurement and analysis of surface myoelectric signals during fatigued cyclic dynamic contractions. Measurement. 2000;27(2):85-92.
35.         Gehring D, Melnyk M, Gollhofer A. Gender and fatigue have influenceon knee joint control strategies during landing. Clinical Biomechanics. 2009;24(1):82-7.
36.         Reimer RC, Wikstrom EA. Functional fatigue of the hip and ankle musculature cause similar alterations in single leg stance postural control. Journal of Science and Medicine in Sport. 2010;13(1):161-6.
37.         Cohen J. A power primer. Psychological bulletin. 1992;112(1):155.
38.         Bendahan D, Jammes Y, Salvan A, Badier M, Confort‐Gouny S, Guillot C, et al. Combined electromyography‐31P‐magnetic resonance spectroscopy study of human muscle fatigue during static contraction. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 1996;19(6):715-21.
39.         Bigland-Ritchie B, Dawson N, Johansson R, Lippold O. Reflex origin for the slowing ofmotoneurone firing rates in fatigue of human voluntary contractions. The Journal of physiology. 1986;379(1):451-9.
40.         Wretling M-L, Henriksson-Larsen K. Mechanical output and electromyographic parameters in males and females during fatiguing isokinetic knee-extensions. International journal of sports medicine. 1998;19(06):401-7.
41.         Wretling M-L, Henriksson-Larsen K, Gerdle B. Inter-relationship between muscle morphology, mechanical output and electromyographic activity during fatiguing dynamic knee-extensions in untrained females. European journal of applied physiology and occupational physiology. 1997;76(6):483-90.
42.         Jeon S, Ye X, Miller WM. Sex comparisons of agonist and antagonist muscle electromyographic parameters during two different submaximalisometric fatiguing tasks. Physiological reports. 2019;7(5):e14022.
43.         Bigland-Ritchie B, Johansson R, Lippold O, Woods J. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of neurophysiology. 1983;50(1):313-24.
44.         Bigland‐Ritchie B, Kukulka C, Lippold O, Woods J. The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. The Journal of physiology. 1982;330(1):265-78.
45.         Qu X, Yeo JC. Effects of load carriage and fatigue on gait characteristics. Journal of biomechanics. 2011;44(7):1259-63.
46.         Hatfield G. The Effects of Quadriceps Impairment on Lower Limb Kinematics, Kinetics And Muscle Activation During Gait In Young Adults: Dalhousie University; 2009.
47.         ParijatP, Lockhart TE. Effects of quadriceps fatigue on the biomechanics of gait and slip propensity. Gait & posture. 2008;28(4):568-73.
48.         Dvir Z. Isokinetics: muscle testing, interpretation, and clinical applications: Elsevier Health Sciences; 2004.
49.         EssénB, Kaijser L. Regulation of glycolysis in intermittent exercise in man. The Journal of physiology. 1978;281(1):499-511.
50.         Pitt M. Neurophysiological assessment of abnormalities of the neuromuscular junction in children. International journal of molecular sciences. 2018;19(2):624.
51.         Mohr M, Schön T, Von Tscharner V, Nigg B. Intermuscular Coherence Between Surface EMG Signals Is Higher for Monopolar Compared to Bipolar Electrode Configurations. Frontiers in physiology. 2018;9:566.
52.         Wakeling JM, SymeDAJM, Medicine NOJotAAoE. Wave properties of action potentials from fast and slow motor units of rats. 2002;26(5):659-68.
53.         Sadoyama T, Masuda T, Miyata H, Katsuta SJEjoap, physiology o. Fibre conduction velocity and fibre composition in human vastus lateralis. 1988;57(6):767-71.
54.         Wakeling JM, Liphardt A-M, Nigg BMJJob. Muscle activity reduces soft-tissue resonance at heel-strike during walking. 2003;36(12):1761-9.