تأثیر دو نوع فعالیت مقاومتی ست‌های وامانده‌ساز و ست‌های پیکربندی‌شده خوشه‌ای بر پاسخ نشانگرهای زیستی آسیب عضله قلبی در ورزشکاران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، دانشکدة تربیت بدنی دانشگاه تهران، تهران، ایران.

2 استاد فیزیولوژی ورزشی، دانشکدة تربیت بدنی دانشگاه تهران، تهران، ایران.

3 دانشیار فیزیولوژی ورزشی، دانشکدة تربیت بدنی دانشگاه تهران، تهران، ایران.

چکیده

 
ست‌های وامانده‌ساز قدرت و استقامت عضلانی را به‌سرعت بهبود می‌بخشند. ست‌های خوشه‌ای در توسعة بیشینة قدرت و توان کارایی زیادی دارند. تحقیق حاضر با متعادل کردن شاخص حجم و شدت در دو شیوة فعالیت مقاومتی ست‌های وامانده‌ساز و ست‌های خوشه‌ای، پاسخ‌های تروپونین قلبی نوع I با حساسیت بالا (hscTnI)، پپتید ناتریوتیک نوع B (Nt-proBNP)، میزان درک فشار (RPE) و ضربان قلب را بررسی می‌کند. 12 ورزشکار مرد با میانگین سنی 48/2± 16/22 سال داوطلبانه دو نوع پروتکل تمرینی ست‌های وامانده‌ساز و خوشه‌ای را با طرح پیش‌آزمون و پایش 30 دقیقه، 4، 12 و 24 ساعت بعد را مجزا اجرا کردند. هر دو نوع پروتکل شامل 9 حرکت در دامنة شدت (RM10-8) و حجم‌های تمرینی برابر بود. برای ست‌های وامانده‌ساز در سه دور 8 تا 10 تکرار و ست‌های خوشه‌ای 9 دور 2  الی 3 تکرار اجرا شد. در پایش حین تمرین میانگین ضربان قلب دور سوم نسبت به دوم در هر دو شیوة فعالیت کاهش داشت (05/0P<). تنها در دور اول مقدار RPE در شیوة ست‌های خوشه‌ای در مقایسه با وامانده‌ساز با اندازة اثر (60/1=d) کمتر بود (001/0P=). در پایش 24 ساعت بعد از مداخلة میانگین hscTnI در هر دو شیوة ست‌های وامانده‌ساز (07/2=d) و خوشه‌ای (61/1=d) افزایش داشت (05/0P<). در پایش 24 ساعت بعد میانگین Nt-proBNP در ست‌های وامانده‌ساز نسبت به تمامی مراحل پایش افزایش داشت، در ست‌های خوشه‌ای این افزایش در مقایسه با سطوح پایه و 30 دقیقه بعد از فعالیت مشاهده شد (05/0P<).در شرایطی که دو شیوة ست‌های وامانده‌ساز و خوشه‌ای دقیق متوازن شوند، تأثیرات ناشی از مداخلة آنها بر روی نشانگرهای آسیب عضلة قلب نزدیک به هم خواهند بود، جدا از اینکه از چه نوع شیوه‌ای در برنامة تمرینی استفاده شده، بیشترین تأثیر تحرک تمرینی از جانب حجم کلی تمرین است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Two Types of Resistance Training (Concentric Failure Set and Configuration Cluster Sets) on Biomarkers Response of Myocardium Injury in Athletes

نویسندگان [English]

  • Rasoul Dokht Abdiyan 1
  • Ali Asghar Ravasi 2
  • Ali Akbarnejad 3
  • Rahman Soori 2
1 Ph.D. Student of Exercise Physiology, Faculty of Physical Education, University of Tehran, Tehran, Iran
2 Professor of Exercise Physiology, Faculty of Physical Education, University of Tehran, Tehran Iran.
3 Associate Professor of Exercise Physiology, Faculty of Physical Education, University of Tehran, Tehran Iran.
چکیده [English]

 
Failure sets rapidly promote muscle strength and endurance. Cluster sets are highly efficient in developing maximum power and strength. This study equated the volume and intensity indexes in two types of resistance training (failure sets versus cluster sets) to investigated high sensitivity Cardiac Troponin I (hscTnI), N-terminal proBNP (NT-proBNP), rate of perceived exertion (RPE) and heart rate (HR) responses. 12 male athletes (mean age 22.16 ± 2.48 y) voluntarily preformed two types of training protocols (failure sets and cluster sets) separately with pretest and 30 minutes, 4, 12 and 24 hours of posttest. Both protocols consisted of 9 movements in equal training volumes and intensity range (8-10 RM); three cycles of 8 to 10 rep were performed for failure sets and nine cycles of 2 to 3 rep were performed for cluster sets. During the training, the mean HR of the third cycle was lower than the second cycle in both training types (P<0.05). Only in the first cycle, RPE in cluster sets was lower than the failure sets with the effect size (d=1.60) (P=0.001). 24 hours after the intervention, mean hscTnI increased in both failure (d=2.07) and cluster (d=1.61) sets (P<0.05). The mean Nt-proBNP in the failure sets was higher 24 hours after the intervention than the other posttests while this increase in the cluster sets was observed only in comparison with the baseline and 30 minutes after the training (P<0.05). When failure and cluster sets are exactly equated, their intervention effects on myocardium injury markers are close together. No matter what type of training is used in the protocol, the greatest effect of training stimulus belongs to the total training volume.

کلیدواژه‌ها [English]

  • biomarkers of myocardium injury
  • cluster sets
  • failure sets
  • high sensitivity Cardiac Troponin I (hscTnI)
  • N-terminal proBNP (NT-proBNP)
1. Schoenfeld BJ, Grgic J, Krieger J. How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency. Journal of sports sciences.2019;37(11) 1286-95 .
2. Schoenfeld BJ, Contreras B, Krieger J, Grgic J, Delcastillo K, Belliard R, et al. Resistance training volume enhances muscle hypertrophy but not strength in trained men. Medicine and science in sports and exercise. 2019;51(1):94.
3. NUNES VRA, RAMIREZ-CAMPILLO R, STEELE J, FISHER JP, GENTIL P. Resistance Training Performed to Failure or Not to Failure Results in Similar Total Volume, but With Different Fatigue and Discomfort Levels. training. 2019;31(33):34.
4. Carroll KM, BernardsJR, Bazyler CD, Taber CB, Stuart CA, DeWeese BH, et al. Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity. International journal of sports physiology and performance. 2019;14(1):46-54.
5. WetmoreA, Wagle JP, Sams ML, Taber C, DeWeese BH, Sato K, et al. Cluster Set Loading in the Back Squat: Kinetic and Kinematic Implications. 2019.
6. Saeidifard F, Medina-Inojosa JR, West CP, Olson TP, Somers VK, Bonikowske AR, et al. The association of resistance training with mortality: A systematic review and meta-analysis. European journal of preventive cardiology. 2019:2047487319850718.
7. Jukic I, Tufano JJ. Shorter but More Frequent Rest Periods: No Effect on Velocity and Power Compared to Traditional Setsnot Performed to Failure. Journal of human kinetics. 2019;66:257.
8. Fleck SJ, Kraemer W. Designing Resistance Training Programs-4th Edition: Human Kinetics; 2014.
9. Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. Journal of the American College of Cardiology. 2010;56(3):169-76.
10. Wang Y, Dai L, Wang N, Zhu Y, Chen M, Wang H. Rapid rule out of acute myocardial infarction in the observe zone using a combination of presentation N-terminal pro-B-type natriuretic peptide and high-sensitivity cardiac troponin I. Clinical biochemistry. 2019.
11. Cirer-Sastre R, Legaz-Arrese A, Corbi F, George K, Nie J, Carranza-García LE, et al. Cardiac Biomarker Release After Exercise in Healthy Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatric exercise science. 2019;31(1):28-36.
12. Kim YS, Karisa N, Jeon WY, Lee H, Kim Y-c, Ahn J. High-level production of N-terminal pro-brain natriuretic peptide, as a calibrant of heart failure diagnosis, in Escherichia coli. Applied microbiology and biotechnology. 2019:1-10.
13. Bauer P, Zeißler S, Walscheid R, Mooren FC, Hillebrecht A. Changes of Cardiac Biomarkers after High-intensity Exercise in Male and Female Elite Athletes of Dragon Boating. Journal of Sports Science. 2016;4:1-8.
14. Savukoski T, Mehtälä L, Lindahl B, Venge P, Pettersson K. Elevation of cardiac troponins measured after recreational resistance training. Clinical biochemistry. 2015;48(12):803-6.
15. Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, Mereles D, Amr A, Buss S, et al. Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury—a metaanalysis of 45 studies. Clinical chemistry. 2015;61(10):1246-55.
16. Shave R, Oxborough D. Exercise-induced cardiac injury: evidence from novel imaging techniques and highly sensitive cardiac troponin assays. Progress in cardiovascular diseases. 2012;54(5):407-15.
17. Stewart GM, Yamada A, Haseler LJ, Kavanagh JJ, Koerbin G, Chan J, et al. Altered ventricular mechanics after 60 min of high-intensity endurance exercise: insights from exercise speckle-tracking echocardiography. American Journal of Physiology-Heart and Circulatory Physiology. 2015;308(8):H875-H83.
18. Stewart GM, Yamada A, Haseler LJ, Kavanagh JJ, Chan J, Koerbin G, et al. Influence of exercise intensity and duration on functional and biochemical perturbations in the human heart. The Journal of physiology. 2016.
19. Oláh A, Németh BT, Mátyás C, Horváth EM, Hidi L, Birtalan E, et al. Cardiac effects of acute exhaustive exercise in a rat model. International journal of cardiology. 2015;182:258-66.
20. Haff GG. Quantifying workloads in resistance training: a brief review. Strength and Cond. 2010;10:31-40.
21. Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, et al. A new approach to monitoring exercise training. The Journal of Strength & Conditioning Research. 2001;15(1):109-15.
22. Fusco A, Knutson C, King C, Mikat RP, Porcari JP, Cortis C, et al. Session RPE During Prolonged Exercise Training. International journal of sports physiology and performance. 2019:1-12.
23. Hof D, von Eckardstein A. High-Sensitivity Troponin Assays in Clinical Diagnostics of Acute Coronary Syndrome. Calcium-Binding Proteins of the EF-Hand Superfamily: Springer; 2019. p. 645-62.
24. Durnin J, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. BritishJournal of Nutrition. 1974;32(01):77-97.
25. Ho IM, Luk JT, Ngo JK, Wong DP. Effects of Different Intraset Rest Durations on Lifting Performance and Self-perceived Exertion During Bench Press Exercise. Journal of strength and conditioning research. 2019.
26. Baumgartner T, Mahar M, Jackson A, Rowe D. Measurement for Evaluation in Physical Education and Exercise Science: McGraw-Hill Companies,Incorporated; 2006.
27. Fathil M, Arshad MM, Gopinath SC, Hashim U, Adzhri R, Ayub R, et al. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosensors and Bioelectronics. 2015;70:209-20.
28. De Souza JC, Tibana RA, Cavaglieri CR, Vieira DCL, De Sousa NMF, Dos Santos MFA, et al. Resistance exercise leading to failure versus not to failure: effects on cardiovascular control. BMC cardiovascular disorders. 2013;13(1):105.
29. Zoladz JA. Muscle and Exercise Physiology: Elsevier Science; 2018.
30. Day ML, McGuigan M, Brice G, Foster C. Monitoring work intensities during resistance training using asession RPE scale: Kinesiology Publications, University of Oregon; 2003.
31. Mayo X, Iglesias-Soler E, Kingsley JD. Perceived exertion is affected by the submaximal set configuration used in resistance Exercise. The Journal of Strength & Conditioning Research. 2019;33(2):426-32.
32. Bompa T, Buzzichelli C. Periodization Training for Sports, 3E: Human Kinetics; 2015.
33. Silva VL, Azevedo AP, Cordeiro JP, Duncan MJ, Cholewa JM, Siqueira-Filho MA, et al. Effects of exercise intensity on perceived exertionduring multiple sets of bench press to volitional failure. Journal of Trainology. 2014;3(2):41-6.
34. Carranza-García L, George K, Serrano-Ostáriz E, Casado-Arroyo R, Caballero-Navarro A, Legaz-Arrese A. Cardiac biomarker response to intermittent exercise bouts. International journal of sports medicine. 2011;32(05):327-31.
35. Stephenson C, McCarthy J, Vikelis E, Shave R, Whyte G, Gaze D, et al. The effect of weightlifting upon left ventricular function and markers of cardiomyocyte damage. Ergonomics. 2005;48(11-14):1585-93.
36. Ghassami M, Naraghi S. The effect of an exhaustive aerobic exercise on NT-proBNP levels in healthy males. Journal of Physical Activity and Hormones. 2018;2(2):55-64.
37. La Gerche A, Inder WJ, Roberts TJ, Brosnan MJ, Heidbuchel H, Prior DL. Relationship between inflammatory cytokines and indices of cardiac dysfunction following intense endurance exercise. PloS one. 2015;10(6):e0130031.
38. Voets PJ, Maas RP. Serum cardiac troponin I analysis to determine the excessiveness of exercise intensity: A novel equation. Journal of theoretical biology. 2016;392:48-52.