سازگاری آیریزین، فولستاتین و مایوستاتین سرمی به هشت هفته تمرین مقاومتی، هوازی و ترکیبی در مردان چاق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران.

2 دانشیار فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران

3 استادیار فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران

4 استاد بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی ارومیه، ارومیه، ایران.

چکیده

 
عضلۀ اسکلتی، بزرگ‌ترین بافتی است که هومئوستاز متابولیکی را با ارتباط متابولیکی ناشی از مایوکاین‌های متنوع تعدیل می‌کند. هدف از پژوهش حاضر بررسی تأثیر 8 هفته تمرین مقاومتی، هوازی و ترکیبی بر مقادیر مایواستاتین، فولستاتین، آیریزین و مقاومت به انسولین در مردان چاق بود. 40 مرد چاق غیرفعال (BMI≥30) به‌طور تصادفی در 4 گروه، تمرین مقاومتی، استقامتی، ترکیبی و کنترل قرار گرفتند. گروه‌های تمرینی به مدت 8 هفته و 3 جلسه در هفته به تمرینات ویژه پرداختند. مقادیر سرمی مایواستاتین، فولستاتین و آیریزین به روش ELISA اندازه‌گیری شد. در متغیر مایواستاتین (041/0 P =، 048/3= F)، فولستاتین (003/0 P =، 661/5= F) و آیریزین (002/0 P =، 261/6= F) بین گروه‌های پژوهش پس از 8 هفته مداخله تفاوت معناداری وجود داشت. نتایج آزمون تعقیبی LSD نشان داد، تمرین مقاومتی نسبت به گروه کنترل (006/0 P =) موجب کاهش معنادار مایواستاتین شد. این در حالی بود که تمرین مقاومتی (006/0 P =) و هوازی (001/0 P =) نسبت به گروه کنترل موجب افزایش معنادار فولستاتین شد. همچنین، تمرین مقاومتی (031/0 P =)، هوازی (003/0 P =) و ترکیبی (001/0 P =) نسبت به گروه کنترل موجب افزایش معنادار آیریزین شد. به‌نظر می‌رسد عوامل دخیل در آتروفی عضلانی مانند مایواستاتین که تحت تأثیر تمرین مقاومتی قرار می‌گیرند، در کنترل تخریب متابولیکی مقاومت به انسولین کمتر دخالت دارند. درحالی‌که عوامل درگیر در هایپرتروفی عضلانی مانند فولستاتین و آیریزین که تحت تأثیر تمرینات هوازی و مقاومتی قرار می‌گیرند، کنترل بهتری بر تخریب‌های ناشی از چاقی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Adaptation of Irisin, Follistatin and Myostatin to 8 weeks of Resistance, Endurance and Concurrent Training in Obese Men

نویسندگان [English]

  • jalal shirzad 1
  • asghar tofighi 2
  • Javad Tolouei azar 3
  • mohammad hasan khadem ansari 4
1 M.Sc. of exercise physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
2 Associate Professor of exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
3 Assistant Professor of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
4 Professor of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
چکیده [English]

 
Skeletal muscle is the largest tissue that modulates metabolic homeostasis with metabolic cross-talk caused by various myokines. The purpose of this study was to investigate the effect of 8 weeks of resistance, Endurance, and concurrent training on the levels of Myostatin, Follistatin, Irisin, and insulin resistance in obese men. 40 sedentary, obese men (BMI≥30) were randomly divided into 4 groups: resisting, endurance, concurrent training and control. The training groups performed special exercises for 8 weeks and three sessions a week. Serum levels of myostatin, Follistatin, and erosion were measured by ELISA method. There was a significant difference between the study groups after 8 weeks of training, myostatin (P = 0.041, F = 3.048), follistatin (P = 0.003, F = 5.661) and irisin (P = 0.002, F= 6.261). Results of the LSD post hoc test showed that resistance training significantly decreased myostatin compared to control group (P = 0.006).However, resistance training (P = 0.006) and aerobic training (P = 0.001) significantly increased folistatin compared to the control group. Also, resistance (P = 0.031), aerobic (P = 0.003) and Concurrent training (P = 0.001) significantly increased irisin compared to the control group. It seems that factors involved in muscle atrophy such as Mayostatin, which are under the influence of resistance training, are less effective in controlling the metabolic degradation of insulin resistance. However, factors involved in muscle hypertrophy such as follistatin and irisin, which affected by both aerobic and resistance exercise training, have better control over obesity-related degradation.

کلیدواژه‌ها [English]

  • Concurrent training
  • Endurance Training
  • Follistatin
  • Irisin
  • Mayostatin
  • resistance training
  • Obese men
1.         Jastreboff AM, Kotz CM, Kahan S, Kelly AS, Heymsfield SB. Obesity as a disease: The Obesity Society 2018 position statement. Obesity. 2019;27(1):7-9.
2.         Piché M-E, Poirier P, Lemieux I, Després J-P. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Progress in cardiovascular diseases. 2018.
3.         Apostolopoulos V, de Courten MP, Stojanovska L, Blatch GL, Tangalakis K, de Courten B. The complex immunological and inflammatory network of adipose tissue in obesity. Molecular nutrition & food research. 2016;60(1):43-57.
4.         Picard F, Géhin M, Annicotte J-S, Rocchi S, Champy M-F, O'Malley BW, et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell. 2002;111(7):931-41.
5.         Norouzirad R, González-Muniesa P, Ghasemi A. Hypoxia in obesity and diabetes: potential therapeutic effects of hyperoxia and nitrate. Oxidative medicine and cellular longevity. 2017;2017.
6.         Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nature medicine. 2015;21(2):159.
7.         Mottillo EP, Desjardins EM, Crane JD, Smith BK, Green AE, Ducommun S, et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell metabolism. 2016;24(1):118-29.
8.         Sanchez-Delgado G, Martinez-Tellez B, Olza J, Aguilera CM, Gil Á, Ruiz JR. Role of exercise in the activation of brown adipose tissue. Annals of Nutrition and Metabolism. 2015;67(1):21-32.
9.         Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exercise and sport sciences reviews. 2005;33(3):114-9.
10.       Raschke S, Eckel J. Adipo-myokines: two sides of the same coin—mediators of inflammation and mediators of exercise. Mediators of inflammation. 2013;2013.
11.       Timmons JA, Baar K, Davidsen PK, Atherton PJ. Is irisin a human exercise gene? Nature. 2012;488(7413):E9.
12.       Hee Park K, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. The Journal of Clinical Endocrinology & Metabolism. 2013;98(12):4899-907.
13.       Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE. Myostatin decreases with aerobic exercise and associates with insulin resistance. Medicine and science in sports and exercise. 2010;42(11):2023.
14.       Lee S-J, McPherron AC. Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences. 2001;98(16):9306-11.
15.       Latres E, Pangilinan J, Miloscio L, Bauerlein R, Na E, Potocky TB, et al. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skeletal muscle. 2015;5(1):34.
16.       hyuck Choi D, Yang J, Kim YS. Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway. Biochemistry and biophysics reports. 2019;17:182-90.
17.       Steculorum SM, Ruud J, Karakasilioti I, Backes H, Ruud LE, Timper K, et al. AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell. 2016;165(1):125-38.
18.       Dong J, Dong Y, Chen F, Mitch W, Zhang L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. International journal of obesity. 2016;40(3):434.
19.       Ge X, Sathiakumar D, Lua B, Kukreti H, Lee M, McFarlane C. Myostatin signals through miR-34a to regulate Fndc5 expression and browning of white adipocytes. International Journal of Obesity. 2017;41(1):137.
20.       Castonguay R, Lachey J, Wallner S, Strand J, Liharska K, Watanabe AE, et al. Follistatin-288-Fc Fusion Protein Promotes Localized Growth of Skeletal Muscle. Journal of Pharmacology and Experimental Therapeutics. 2019;368(3):435-45.
21.       Sobhani V, Mirdar S, Arabzadeh E, Hamidian G, Mohammadi F. High-intensity interval training-induced inflammation and airway narrowing of the lung parenchyma in male maturing rats. Comparative Clinical Pathology. 2018;27(3):577-82.
22.       Maalouf G-E, El Khoury D. Exercise-Induced Irisin, the Fat Browning Myokine, as a Potential Anticancer Agent. Journal of Obesity. 2019;2019.
23.       Tsuchiya Y, Mizuno S, Goto K. Irisin response to downhill running exercise in humans. Journal of exercise nutrition & biochemistry. 2018;22(2):12.
24.       Blüher S, Panagiotou G, Petroff D, Markert J, Wagner A, Klemm T, et al. Effects of a 1‐year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity. 2014;22(7):1701-8.
25.       Peppler WT, Castellani LN, Root-McCaig J, Townsend LK, Sutton CD, Frendo-Cumbo S, et al. Regulation of Hepatic Follistatin Expression at Rest and during Exercise in Mice. Medicine & Science in Sports & Exercise. 2019;51(6):1116-25.
26.       Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology. 2012;8(8):457.
27.       Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Medicine & Science in Sports & Exercise. 2012;44(9):1680-8.
28.       Foster C, Jackson AS, Pollock ML, Taylor MM, Hare J, Sennett SM, et al. Generalized equations for predicting functional capacity from treadmill performance. American heart journal. 1984;107(6):1229-34.
29.       Kalyani MN, Ebadi A, Mehri SN, Jamshidi N. Comparing the effect of fire-fighting protective clothes and usual work clothes on aerobic capacity (VO2max). Pak J Med Sci. 2008;24(5):678-83.
30.       Annibalini G, Lucertini F, Agostini D, Vallorani L, Gioacchini A, Barbieri E, et al. Concurrent aerobic and resistance training has anti-inflammatory effects and increases both plasma and leukocyte levels of IGF-1 in late middle-aged type 2 diabetic patients. Oxidative medicine and cellular longevity. 2017;2017.
31.       Libardi CA, De GS, Cavaglieri CR, Madruga VA, Chacon-Mikahil M. Effect of resistance, endurance, and concurrent training on TNF-α, IL-6, and CRP. Medicine and science in sports and exercise. 2012;44(1):50-6.
32.       Aghda AK, Sobhani V, Arabzadeh E, Ali M. Evaluation of Military Optimal Performance Challenge (MOPC) Test in Military Students at a Training Center, Tehran, Iran. Journal of Military Medicine. 2018;20(2):181-8.
33.       Rı́os R, Carneiro I, Arce VM, Devesa J. Myostatin is an inhibitor of myogenic differentiation. American Journal of Physiology-Cell Physiology. 2002;282(5):C993-C9.
34.       Bai XB, Hu Y, Li Y. PO-306 The effect of four weeks hypoxic resistance training on myostatin and follistatin expression in skeletal muscle of rats. Exercise Biochemistry Review. 2018;1(5).
35.       Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L, et al. Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proceedings of the National Academy of Sciences. 2009;106(18):7479-84.
36.       Kollias HD, McDermott JC. Transforming growth factor-β and myostatin signaling in skeletal muscle. Journal of applied physiology. 2008;104(3):579-87.
37.       Luo L, Lu A-M, Wang Y, Hong A, Chen Y, Hu J, et al. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Experimental gerontology. 2013;48(4):427-36.
38.       Winbanks CE, Weeks KL, Thomson RE, Sepulveda PV, Beyer C, Qian H, et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol. 2012;197(7):997-1008.
39.       Attarzadeh Hosseini SR, Moeinnia N, Motahari Rad M. The effect of two intensities resistance training on muscle growth regulatory myokines in sedentary young women. Obesity Medicine. 2017;2.
40.       Allen DL, Hittel DS, McPherron AC. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Medicine and science in sports and exercise. 2011;43(10):1828.
41.       Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research. 2010;24(10):2857-72.
42.       Camporez J-PG, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proceedings of the National Academy of Sciences. 2016;113(8):2212-7.