مقایسه تاثیر فعالیت هوازی بیشینه بر تغییرات آنتی اکسیدانی و ایمونوگلوبولین A بزاقی در مردان میانسال ورزشکار و غیر ورزشکار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فیزیولوژی ورزشی ، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه گیلان، رشت ، ایران

2 استاد فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه گیلان، رشت ، ایران

3 استاد بیوشیمی، دانشکده علوم، دانشگاه گیلان، رشت ، ایران

چکیده

فعالیت‌های بدنی نقش مهمی در پیشگیری، به تأخیر انداختن و درمان مشکلات ناشی از فرآیند پیری و بهبود کیفیت زندگی دارند. هدف از این تحقیق، اندازه‌گیری شاخص‌های سیستم دفاع آنتی اکسیدانی و ایمونولوژیکی برای درک اثر فعالیت ورزشی هوازی بود. 12 ورزشکار مرد (سن 95/4±7/51 سال، وزن 51/4±5/67 کیلوگرم، شاخص توده بدن 92/0±93/23 کیلوگرم بر مترمربع) و 12 غیرورزشکار مرد (سن 28/3±91/52 سال، وزن 12/5±35/72 کیلوگرم، شاخص توده بدن 89/0±58/25 کیلوگرم بر مترمربع)، به صورت تصادفی هدفمند انتخاب شدند. آزمون تعدیل شده 20 متر شاتل ران برای فعالیت هوازی وامانده ساز مورد استفاده قرار گرفت. فعالیت آنزیم های سوپراکسیداز دیسموتاز(SOD) ، کاتالاز (CAT)، پراکسیداز (POD) و همچنین ایمونوگلوبولین A بزاقی قبل، بلافاصله بعد و یک ساعت بعد ازتمرین هوازی بیشینه اندازه گیری شد.بر اساس نتایج، فعالیت آنزیم‌های آنتی اکسیدانی در هر دو گروه بلافاصله بعد از فعالیت و هم چنین یک ساعت بعد از فعالیت، افزایش معناداری نسبت به قبل از فعالیت داشت. از طرفی، در هر دو گروه ورزشکار و غیر ورزشکار، تفاوت معنا دار بین مقدار ایمونوگلوبولین A قبل و بعد از تمرین ملاحظه نشد. در حالت ریکاوری نیز فعالیت آنزیم های CAT و SOD در گروه ورزشکار نسبت به غیر ورزشکار افزایش معناداری نشان دادند. به نظر می رسد که سابقه فعالیت ورزشی منظم در افراد ورزشکار می‌تواند باعث سازگاری بهینه و افزایش توان سیستم دفاعی آنتی اکسیدانی در مقابله با فشار اکسایشی گردد.

کلیدواژه‌ها


عنوان مقاله [English]

A Comparison of the Effect of Maximal Aerobic Exercise on Salivary Antioxidant and Immunoglobulin AChanges in Athlete and Non-Athlete Middle-Aged Men

نویسندگان [English]

  • Hamzeh Abdinejad 1
  • Arsallan Damirchi 2
  • Reihaneh Sariri 3
1 MSc student, Faculty of Physical Education and Exercise Science, University of Guilan, Rasht, Iran
2 Professor in Exercise Physiology, Faculty of Physical Education and Exercise Science, University of Guilan, Rasht, Iran
3 Professor in Biochemistry, Faculty of Sciences, University of Guilan, Rasht, Iran, Corresponding
چکیده [English]

Physical activity plays an important role in preventing, delayingand treating problems associated with aging and improving life quality. The aim of the present study was to measure the antioxidant and immunological defense system parameters in order to identify the effect of aerobic exercise. 12 male athletes (age 51.7±4.95 yr, weight 67.5±4.51 kg and BMI 23.93±0.92 kg/m2) and 12 non- athlete men (age 52.91±3.28yr, weight 72.35±5.12 kg and BMI 25.58±0.89kg/m2) were selected by random purposive sampling method. A modified 20m Shuttle Runexperiment was used for exhaustive physical activity. The activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) andsalivary immunoglobulin A wasmeasured before, immediately after and one hour after maximal aerobic exercise. The results showed that the activity of antioxidant enzymes significantly increased immediately after and also one hour after the exercise in both groupscompared with their value before the exercise. On the other hand, no significant differences were observed in the amount of immunoglobulin A before and after the exercise in both groups. During recovery, the activity of SOD and CAT enzymes showed a significant increase in the athlete group compared with the non-athlete group. It seems that a regular physical activity in athletes can induce efficient adaptation and increase antioxidant defense system power against oxidative stress.

کلیدواژه‌ها [English]

  • Aerobic exercise
  • Antioxidant enzymes
  • Saliva
  • immunoglobulinA
  • middle age
  1. Allgrove J E, Gomes E, Hough J, Gleeson M. (2008). Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men.  Journal of Sports Sciences. 26, 6, 653-661.
  2. Anderson-Bill E S, Winett R A, Wojcik JR, Williams D M. (2011). Aging and the social cognitive determinants of physical activity behavior and behavior change: evidence from the guide to health trial. Journal of Aging Research. 5, 1-12.
  3. Andriichuk A, Tkachenko H, Tkachova I. (2016). Oxidative Stress Biomarkers and Erythrocytes Hemolysis in Well-Trained Equine Athletes Before and After Exercise. Journal of Equine Veterinary Science. 36, 32-43
  4. Aoyagi Y, Park H, Watanabe E, Park S, Shephard R J. (2009). Habitual physical activity and physical fitness in older Japanese adults: the Nakanojo Study. Gerontology. 55(5), 523-531.
  5. Ashe M C, Miller W C, Eng J J, Noreau, L. (2009). Older adults, chronic disease and leisure-time physical activity. Gerontology. 55, (1), 64-72.
  6. Beauchamp C, Fridovich I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry. 44(1), 276-287.
  7. Damirchi A, Kiani M, Jafarian V, Sariri R. (2010). Response of salivary peroxidase to exercise intensity. European Journal of Applied Physiology. 108(6), 1233-1237.
  8. Deaton C M, Marlin DJ.(2003). Exercise-associated oxidative stress. Clinical Techniques in Equine Practice. 2(3), 278-291.
  9. Dmirchi A, Mirzaei B, Mehrabian J. (2007). The effects of vitamin E supplementation on exhaustion time and some of the oxidative stress indexes in sedentary men after 8 weeks aerobic training. Research on Sport Science. 4(13), 97-112.

10.Edmonds R, Burkett B, Leicht A, McKean M. (2015). Effect of chronic training on heart rate variability, salivary IgA and salivary alpha-amylase in elite swimmers with a disability. PloS One. 10(6), 1-12.

11.Elabed K, Masmoudi L, Koubaa A, Hakim A. (2014). Antioxidant in Response to Anaerobic or Aerobic Exercise Alone or in Combination in Male Judokas. Advances in Life Sciences and Health. 1(1), 24-33.

12.Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada J, Covas M, Ordonez-Llanos J, Marrugat J. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program and to acute physical activity in healthy young men and women. Atherosclerosis. 167(2), 327-334.

13.Engels H J, Fahlman M M, Morgan A L, Formolo L R. (2004). Mucosal IgA Response to Intense Intermittent Exercise in Healthy Male and Female Adults. Journal of Exercise Physiology Online. 7(5), 77-82.

14.Fatouros I G, Jamurtas A Z, Villiotou V, Pouliopoulou S, Fotinakis P, Taxildaris K, and Deliconstantinos G. (2004). Oxidative stress responses in older men during endurance training and detraining. Medicine and Science in Sports and Exercise. 36, 2065-2072.

15.Gleeson M, Hall S T, McDonald W A, Flanagan A J, Clancy R L. (1999). Salivary IgA subclasses and infection risk in elite swimmers. Immunology and Cell Biology. 77(4), 351-355.

16.Gleeson M. (2000). Mucosal immunity and respiratory illness in elite athletes. International Journal of Sports Medicine. 21, S33-43

17.Goto S, Radak,Z. (2013). Implications of oxidative damage to proteins and DNA in aging and its intervention by caloric restriction and exercise. Journal of Sport and Health Science.2(2), 75-80.

18.Halliwell B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews. 70(5), 257-265.

19.Kline G M, Porcari J P, Hintermeister R, Freedson P S, Ward A, McCarron R F, Ross J, Rippe, J M. (1987). Estimation of VO2max from a one-mile track walk, gender, age, and body weight. Med Sci Sports Exercise. 1(3), 253-259.

20.König D, Wagner, K., Elmadfa I, Berg A. (2000). Exercise and oxidative stress: significance of antioxidants with reference to inflammatory, muscular, and systemic stress. Exercise Immunology Review. 7, 108-133.

21.Kurkcu R. (2010). The effects of short-term exercise on the parameters of oxidant and antioxidant system in handball players. African Journal of Pharmacy and Pharmacology. 7(4), 448-452.

22.Laurel T.Advance in exercise immunology (1999). Advance in exercise immunology.  Ohio, Human Kinetics, 1999 Edn.

23.Leelarungrayub N, Sutabhaha T, Pothongsunun P, Chanarat N. (2005). Exhaustive exercise test and oxidative stress response in athletic and sedentary subjects. CMU J. 4, 183-190.

24.Leite M F, de Lima A M, Massuyama M M, Otton R. (2010). Astaxanthin restores the enzymatic antioxidant profile in salivary gland of alloxan-induced diabetic rats. Archives of Oral Biology. 55, (7), 479-485.

25.Mahan L K, Escott-Stump S. (2004). Krause's food, nutrition, & diet therapy. 12th edition, Elsevier, London.

26.Malaver Antonio J, Reyes Rafael A (2009). Exhaustive physical exercise causes a decrease in oxidative stress and an increase in salivary total antioxidant activity of elite triathlete. Age (years). 21, 38-44.

27.Margaritis I, Palazzetti S, Rousseau A S, Richard M J, Favier A. (2003). Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. Journal of the American College of Nutrition. 22(2), 147-156.

28.Naclerio F, Larumbe-Zabala E, Cooper R, Allgrove J, Earnest CP. (2015). A multi-ingredient containing carbohydrate, proteins L-glutamine and L-carnitine attenuates fatigue perception with no effect on performance, muscle damage or immunity in soccer players. PLoS One. 10(4), 1-17.

29.Nieman D C, Pedersen B K. (1999). Exercise and immune function. Sports Medicine. 27(2), 73-80.

30.Nieman D C. (1997). Immune response to heavy exertion. Journal of Applied Physiology. 82, (5), 1385-1394.

31.Ortenblad N, Madsen K, Djurhuus M S. (1997). Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 272(4), R1258-R1263.

32.Papacosta E, Gleeson M, Nassis G P. (2013). Salivary hormones, IgA, and performance during intense training and tapering in judo athletes. The Journal of Strength & Conditioning Research. 27(9), 2569-2580.

33.Radák Z. (2000). Free radicals in exercise and aging. Human Kinetics, 1st Ed, 2000.

34.Reid M B, Moylan J S. (2011). Beyond atrophy: redox mechanisms of muscle dysfunction in chronic inflammatory disease. The Journal of Physiology. 589(9), 2171-2179.

35.Saral Y, Coskun B K, Ozturk P, Karatas F, Ayar A. (2005). Assessment of salivary and serum antioxidant vitamins and lipid peroxidation in patients with recurrent aphthous ulceration. The Tohoku Journal of Experimental Medicine. 206(4), 305-312.

36.Sariri R, Damirchi A, Nazari Y. (2013). Salivary antioxidant variations in athletes after intense exercise.  Medicina Sportiva: Journal of Romanian Sports Medicine Society.9(1), 2043-2047.

37.Sariri R, Damirchi A. (2010). Alternations in salivary a-amylase due to exercise intensity. Pharmacology. 3, 263-269.

38.Saritaş N, Uyanik F, Hamurcu Z, Çoksevim B. (2011). Effects of acute twelve minute run test on oxidative stress and antioxidant enzyme activities. African Journal of Pharmacy and Pharmacology. 5(9), 1218-1222.

39.Teixeira A M, Rama L, Martins M, Cunha M. (2006). Kinetic response of salivary IgA to several exercise protocols performed by well trained swimmers. Rev Port Cien Desp 6(Supl 2) 117-182.

40.Thomas N E, Leyshon A, Hughes M G, Davies B, Graham M, Baker J S. (2009). The effect of anaerobic exercise on salivary cortisol, testosterone and immunoglobulin (A) in boys aged 15-16 years.  European Journal of Applied Physiology. 107(4), 455-461.

41.Ugras A F (2013). Effect of high intensity interval training on elite athletes’ antioxidant status. Science & Sports. 28(5), 253-259.

42.Urbanska A. (2007). Location and variability of catalase activity within aphids. Electronic Journal of Polish Agricultural Universities, Series Biology, 10(4), 1-8.

43.Viena TD, Banks J B, Barbu I M, Schulman A H, Tartar J L. (2012). Differential effects of mild chronic stress on cortisol and S-IgA responses to an acute stressor. Biological Psychology. 91, (2), 307-311.

44.Vincent H K, Raiser S N, Vincent K R. (2012).The aging musculoskeletal system and obesity-related considerations with exercise. Ageing Research Reviews. 11(3), 361-373.

45.Wang S Y, Ballington J R. (2007). Free radical scavenging capacity and antioxidant enzyme activity in deerberry (Vaccinium stamineum L.). LWT-Food Science and Technology. 40,(8), 1352-1361.