تأثیر فعالیت استقامتی با حجم بالا در شرایط هایپوکسی نورموباریک و نورموکسی بر پاسخ مویرگ زایی در مردان غیرفعال

نویسندگان

1 کارشناس ارشد فیزیولوژی و تغذیه ورزشی دانشگاه تهران

2 استاد دانشگاه تهران

3 استادیار دانشگاه تهران

4 کارشناس ارشد دانشگاه بوعلی سینا

چکیده

تمرینات ورزشی باعث تغییرات فیزیولوژیکی و بیوشیمیایی گسترده ای در بدن می شوند که از جمله این تغییرات می توان به افزایش چگالی  مویرگی یا آنژیوژنز در بافت عضله اسکلتی و عضله قلبی اشاره کرد. VEGF به عنوان مهمترین فاکتور آنژیوژنیکی جهت رخداد فرایندهای آنژیوژنزی شناخته شده است، لذا هدف از انجام تحقیق حاضر بررسی تاثیر یک جلسه فعالیت استقامتی طولانی مدت در شرایط هایپوکسی نورموباریک و نورموکسی بر پاسخ مویرگ زایی در مردان غیر فعال می باشد.به این منظور 8 مرد جوان غیر فعال (سن 5/0±25 سال و قد 4/5±174سانتی متر، وزن 5/4±62کیلوگرم؛ حداکثر بازده کاری (Wmax) در شرایط هایپوکسی 41/13±159و در شرایط نورموکسی21/8±171 به عنوان آزمودنی انتخاب شدند. آزمودنی‌ها پروتکل فعالیت تداومی را در شرایط هایپوکسی نورموباریک (3/15 تا 5/15 درصداکسیژن تقریباً برابر ارتفاع 2500 متر) و همین پروتکل را در شرایط نورموکسی در دو هفته مجزا اجرا کردند. نمونه های خونی قبل، بلافاصله و 2 ساعت بعد از فعالیت گرفته شد. نتایج آزمون تحلیل واریانس با اندازه گیری‌های مکرر نشان داد که بین شرایط محیطی مختلف (هایپوکسی و نورموکسی)، درمیزاناثرگذاریبرسطوحVEGFسرمی مردان غیر فعال اختلاف معنادار وجود دارد(036/0P=). مداخلات تمرینی و مطالعات بسیاری برای مشخص شدن مویرگ زایی در بدن نیاز است. اگرچه سطوح بالای VEGFبعد از فعالیت تداومی در شرایط هایپوکسی به نسبت شرایط نورموکسی ممکن است منجر به افزایش آنژیوژنز و مویرگ زایی شود. به هر حال مطالعات آینده برای مشخص شدن محرک‌ها و مکانیسم‌هایی که برای رشد عروق جدید در تمرینات تداومی که گزارش شده نیازمند است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of High Volume Endurance Exercise (HVE) during Normobaric Hypoxia and Normoxia on Angiogenesis Response in Inactive Men

نویسندگان [English]

  • Yaghoub Mehri Alvar 1
  • Ali Asghar Ravasi 2
  • Fatemeh Shabkhiz 3
  • Fahimeh Erfani Adab 4
  • Sajjad Hasanvand 1
1 MSc. of Exercise Physiology and Nutrition, University of Tehran, Tehran, Iran
2 Professor, University of Tehran, Tehran, Iran
3 Assistant Professor, University of Tehran, Tehran, Iran
4 MSc., Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Exercise training induces vast physiological and biochemical changes in the body such as an increase in capillary density or angiogenesis of muscular and cardiac tissues. VEGF is known as the most important angiogenic factor in the occurrence of angiogenesis processes. Thus the aim of this study was to investigate the effect of a single bout of long endurance exercise on in normobaric hypoxia and normoxia conditions on angiogenesis response of inactive men. 8 inactive young men (age 25±0.5 yr, height 174±5.4 cm, weight 62 ±4.5 kg and maximum work output (Wmax) in hypoxia condition 159±13.41 and in normoxia condition 171±8.21) were selected as the subjects. Subjects performed the protocol of continuous exercise in normobarichypoxia condition (%15.3-15.5 O2, altitude of approximately 2500 m) and performed the same protocol in normoxia condition during two separate weeks. Blood samples were collected before, immediately and two hours after the exercise. The results of ANOVA with repeated measures showed a significant difference between hypoxia and normoxia conditions in the amount of the effectiveness on serum VEGF levels in inactive men (P=0.036). Training interventions and many studies are needed to determine angiogenesis in human body. Although high levels of VEGF after continuous exercise may increase angiogenesis in hypoxia condition compared with normoxia condition, future studies are needed to determine the incentives and mechanisms necessary for the growth of new blood arteries in continuous exercises.
 

کلیدواژه‌ها [English]

  • High Volume Endurance Exercise
  • hypoxia
  • Angiogenesis
  • Vascular Endothelial Growth Factor
  • Vessels
1.رنجبر کمال، نورشاهی مریم، هدایتی مهدی، طاهری چادرنشین حسین. (1390)."بررسی سطوح سرمی فاکتورهای آنژیوژنیکی در پاسخ به یک جلسه فعالیت زیر بیشینه طولانی مدت در مردان غیرفعال". نشریه فیزیولوژی و فارماکولوژی 15(1)، صفحه­ی 124-132.
2.Amaral, S., L. Sanchez, A. Chang, L. Rossoni & L. Michelini (2008). "Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats". Brazilian Journal of Medical and Biological Research, 41, pp:424-431.
3.Brown, M. & O. Hudlicka (2003). "Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases". Angiogenesis, 6, pp:1-14.
4.Bunn, H. F. & R. O. Poyton (1996)."Oxygen sensing and molecular adaptation to hypoxia". Physiological Reviews, 76, pp:839-885
5.Davis, P.G., et al., (2002). "Acute Effect of Prolonged Cycle Ergometer Exercise on Plasma Vascular Endothelial Growth Factor". Medicine & Science in Sports & Exercise, 2002. 34(5): p. S30.
6.Egginton, S. (2009). "Invited review: activity-induced angiogenesis". Pflügers Archiv European Journal of Physiology, 457, pp:963-977.
7.Ferrara, N., H. P. Gerber & J. LeCouter (2003). "The biology of VEGF and its receptors". Nature medicine, 9, pp:669-676.
8.Gavin, T., J. Drew, C. Kubik, W. Pofahl & R. Hickner (2007). "Acute resistance exercise increases skeletal muscle angiogenic growth factor expression". Acta Physiologica, 191, pp:139-146.
9.Gavin, T. P., C. B. Robinson, R. C. Yeager, J. A. England, L. W. Nifong & R. C. Hickner (2004). "Angiogenic growth factor response to acute systemic exercise in human skeletal muscle". Journal of applied physiology, 96, pp:19-24.
10.Gu, J. W., G. Gadonski, J. Wang, I. Makey & T. Adair (2004)."Exercise increases endostatin in circulation of healthy volunteers". BMC physiology, 4, 2.
11.Gustafsson, T., A. Knutsson, A. Puntschart, L. Kaijser, S. A. C. Nordqvist, C. Sundberg & E. Jansson (2002). "Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training". Pflügers Archiv European Journal of Physiology, 444, pp:752-759.
12.Gustafsson, T. & W. E. Kraus (2001). "Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle, and their modification in muscle pathology". Front Biosci, 6, D75-D89.
13.Hakim, A. A., H. Petrovitch, C. M. Burchfiel, G. W. Ross, B. L. Rodriguez, L. R. White, K. Yano, J. D. Curb & R. D. Abbott (1998). "Effects of walking on mortality among nonsmoking retired men". New England Journal of Medicine, 338, pp:94-99.
14.Helge JW, Stallknecht B, Pedersen BK, Galbo H, Kiens B, Richter EA. (2003). "The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle". The Journal of physiology 546:pp:299-305
15. Höffner L, Nielsen JJ, Langberg H, Hellsten Y. (2003).  "Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in human skeletal muscle interstitium". The Journal of physiology 550:pp:217-25
16. Jensen, L., J. Bangsbo & Y. Hellsten (2004). "Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle". The Journal of Physiology, 557, pp:571-582.
17. Keong, C. C., H. J. Singh & R. Singh (2006). "Effects of palm vitamin E supplementation on exercise-induced oxidative stress and endurance performance in the heat". J Sports Science Med, 5, pp:629-639.
18. Kojda, G. & R. Hambrecht (2005). "Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy?" Cardiovascular research, 67, pp:187-197.
19. Leick, L., et al., (2009). "PGC-1α mediates exercise-induced skeletal muscle VEGF expression in mice". American Journal of Physiology-Endocrinology And Metabolism, 297(1): p. E92-E103.
20. Lundby, C., J. A. L. Calbet & P. Robach (2009). "The response of human skeletal muscle tissue to hypoxia". Cellular and molecular life sciences, 66, pp:3615-3623.
21. Lundby, C. & A. Steensberg (2004). "Interleukin-6 response to exercise during acute and chronic hypoxia". European journal of applied physiology, 91, pp: 88-93.
22. Margaritis, I., S. Palazzetti, A. S. Rousseau, M. J. Richard & A. Favier (2003). "Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response". Journal of the American College of Nutrition, 22, pp:147-156.
23. McArdle, W. D., F. I. Katch & V. L. Katch. (2009). "Exercise physiology: Nutrition, energy, and human performance". Lippincott Williams & Wilkins.,pp:124-231
24. Morton, J. P. & N. T. Cable (2005). "The effects of intermittent hypoxic training on aerobic and anaerobic performance". Ergonomics, 48, pp:1535-1546.
25. Mounier, R., V. Pialoux, L. Schmitt, J. P. Richalet, P. Robach, J. Coudert, E. Clottes & N. Fellmann (2009). "Effects of acute hypoxia tests on blood markers in high-level endurance athletes". European journal of applied physiology, 106, pp:713-720.
26. Nemet, D., S. Hong, P. J. Mills, M. G. Ziegler, M. Hill & D. M. Cooper (2002). "Systemic vs. local cytokine and leukocyte responses to unilateral wrist flexion exercise". Journal of applied physiology, 93, pp:546-554.
27. Pedersen, B. K., A. Steensberg & P. Schjerling (2004). "Musclederived interleukin6: possible biological effects". The Journal of Physiology, 536, pp:329-337.
28. Pedersen, B. K. & A. D. Toft (2000). "Effects of exercise on lymphocytes and cytokines". British Journal of Sports Medicine, 34, pp:246-251.
29. Plomgaard, P., M. Penkowa & B. K. Pedersen (2005). "Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles". Exerc Immunol Rev, 11, pp:53-63.
30. Poulsen, H. E., S. Loft & K. Vistisen (1996). "Extreme exercise and oxidative DNA modification". Journal of sports sciences, 14, pp:343-346.
31. Powers, S. K. & M. J. Jackson (2008). "Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production". Physiological Reviews, 88, pp:1243-1276.
32. Prior, B. M., H. Yang & R. L. Terjung (2004). "What makes vessels grow with exercise training? " Journal of applied physiology, 97;pp:1119-1128.
33. Richardson, R., H. Wagner, S. Mudaliar, E. Saucedo, R. Henry & P. Wagner (2000). "Exercise adaptation attenuates VEGF gene expression in human skeletal muscle". American Journal of Physiology-Heart and Circulatory Physiology, 279, H772-H778.
34. Rullman, E., H. Rundqvist, D. Wågsäter, H. Fischer, P. Eriksson, C. J. Sundberg, E. Jansson & T. Gustafsson (2007). "A single bout of exercise activates matrix metalloproteinase in human skeletal muscle". Journal of applied physiology, 102, pp:2346-2351.
35. Shen, M., J. Gao, J. Li & J. Su (2009). "Effect of ischaemic exercise training of a normal limb on angiogenesis of a pathological ischaemic limb in rabbits". Clinical Science, 117, pp:201-208.
36. Stefanini, M. O., F. T. H. Wu, F. Mac Gabhann & A. S. Popel (2008). "A compartment model of VEGF distribution in blood, healthy and diseased tissues". BMC systems biology, 2, 77.
37. Suhr, F., K. Brixius, M. de Marées, B. Bölck, H. Kleinöder, S. Achtzehn, W. Bloch & J. Mester (2007). "Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans". Journal of applied physiology, 103, pp:474-483.
38. Suto, K., Y. Yamazaki, T. Morita & H. Mizuno (2005). "Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms". Journal of Biological Chemistry, 280, pp:2126-2131.
39. Tang, K., E. C. Breen, H. P. Gerber, N. M. A. Ferrara & P. D. Wagner (2004). "Capillary regression in vascular endothelial growth factor-deficient skeletal muscle". Physiological genomics, 18, pp:63-69.
40. Tang, K., F. C. Xia, P. D. Wagner & E. C. Breen (2010). "Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle". Respiratory physiology & neurobiology, 170, pp:16-22.
41. Thorell, D., et al., "Strenuous exercise increases late outgrowth endothelial cells in healthy subjects". European journal of applied physiology, 2009. 107(4): pp: 481-488.
42. Van Craenenbroeck, E. M. F., Vrints, C. J., Haine, S. E., Vermeulen, K., Goovaerts, I., Van Tendeloo, V. F. I., Hoymans, V. Y., and Conraads, V. M. A. (2008). "A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile." Journal of Applied Physiology, 104(4), pp:1006-1013.
43. Van Wagoner, N. J. & E. N. Benveniste (1999). "Interleukin-6 expression and regulation in astrocytes". Journal of neuroimmunology, 100, pp:124-139.
44. Vu, T. H. & Z. Werb (2000). "Matrix metalloproteinases: effectors of development and normal physiology". Science Signalling, 14, p:2123.
45. Wiesner, R. J. (1997). "Adaptation of mitochondrial gene expression to changing cellular energy demands". Physiology, 12, pp:178-184.
46. Wood, R., B. Sanderson, C. Askew, P. Walker, S. Green & I. Stewart (2006). "Effect of training on the response of plasma vascular endothelial growth factor to exercise in patients with peripheral arterial disease". Clinical Science, 111, pp:401-409.
47. Wu, G., J. S. Rana, J. Wykrzykowska, Z. Du, Q. Ke, P. Kang, J. Li & R. J. Laham (2009). "Exercise-induced expression of VEGF and salvation of myocardium in the early stage of myocardial infarction". American Journal of Physiology-Heart and Circulatory Physiology, 296, H389-H395.
48. Wu, L. W., L. D. Mayo, J. D. Dunbar, K. M. Kessler, M. R. Baerwald, E. A. Jaffe, D. Wang, R. S. Warren & D. B. Donner .(2000). "Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation". Journal of Biological Chemistry, 275, pp:5096-5103.
49. Zachary, I. & G. Gliki (2001). "Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family". Cardiovascular research, 49, pp:568-581.
50. Zhao, W., T. Zhao, Y. Chen, R. A. Ahokas & Y. Sun (2009). "Reactive oxygen species promote angiogenesis in the infarcted rat heart". International journal of experimental pathology, 90, pp:621-629.