مقایسۀ تأثیر دو الگوی فعالیت ورزشی ساده (رکاب زدن) و پیچیده (ایروبیک) بر مقادیر عامل رشد عصبی مشتق از مغز و عملکرد شناختی دختران نوجوان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس‌ارشد فیزیولوژی ورزشی، دانشگاه شاهد، تهران، ایران

2 استادیار، گروه تربیت بدنی و علوم ورزشی، دانشکدۀ علوم انسانی، دانشگاه شاهد، تهران، ایران

چکیده

 
هدف از پژوهش حاضر، مقایسۀ تأثیر دو الگوی فعالیت ورزشی (ساده و پیچیده) بر مقادیر سرمی عامل رشد عصبی مشتق از مغز (BDNF) و عملکرد شناختی دختران نوجوان بود. بدین‌منظور، نه آزمودنی (با میانگین سنی 9/0±3/17 سال و شاخص تودۀ بدنی 02/3±4/22 کیلوگرم بر متر مربع) به فاصلۀ یک هفته، دو فعالیت ورزشی پیچیده (ایروبیک) و ساده (رکاب زدن)، با شدت متوسط 50 تا 60 درصد حداکثر اکسیژن مصرفی را انجام دادند. فعالیت ورزشی به مدت 30 دقیقه در سه نوبت 10 دقیقه­ای با فواصل استراحت دو دقیقه­ انجام گرفت. قبل و پس از فعالیت ورزشی به‌منظور سنجش BDNF از آزمودنی­ها نمونۀ خون گرفته شد و برای ارزیابی عملکرد شناختی، آزمون­های شناختی ارقام نماد و رنگ - واژۀ استروپ توسط آزمودنی­ها کامل شد. برای ارزیابی داده­ها از آزمون آماری t همبسته استفاده شد (05/0>P). بر مبنای یافته­های به‌دست­آمده، تفاوت معناداری در میزان سرمی عامل رشد عصبی مشتق از مغز در مقایسۀ دو الگوی فعالیت ورزشی ساده و پیچیده یافت نشد (723/0=P). همچنین با توجه به نتایج آزمون شناختی رنگ واژۀ استروپ، فعالیت ورزشی پیچیده نسبت به فعالیت ورزشی ساده بهبود معناداری در عملکرد شناختی را نشان داد (05/0 >P). به‌طورکلی به‌نظر می­رسد، الگوی فعالیت ورزشی (ساده و پیچیده) در دختران نوجوان مشابه آنچه در این پژوهش استفاده شد، تأثیر معناداری بر پاسخ عامل رشد عصبی مشتق از مغز ندارد. با وجود این، فعالیت ورزشی پیچیده دست­کم بر برخی از جنبه­های عملکرد شناختی تأثیر معنادار مطلوب­تری دارد و می­تواند موجب بهبود عملکرد شناختی شود.

کلیدواژه‌ها


عنوان مقاله [English]

A Comparison of the Effect of Simple (Cycling) and Complex (Aerobic) Exercise Patterns on Brain Derived Neurotrophic Factor Levels and Cognitive Function in Adolescent Girls

نویسندگان [English]

  • Zeinab Rashki 1
  • Ali Samadi 2
  • Esamaeil Nasiri 2
1 MSc in Exercise Physiology, Shahed University, Tehran, Iran
2 Assistant Professor, Department of Physical Education and Sport Sciences, Faculty of Humanities, Shahed University, Tehran, Iran
چکیده [English]

 
The aim of the present study was to compare the effect of two exercise patterns (simple and complex) on serum levels of brain-derived neurotrophic factor (BDNF) and cognitive function in adolescent girls. 9 subjects (mean ±SD, age: 17.3±0.9 years; BMI: 22.4±3.02 kg/m2) with a one-week interval performed complex (aerobic) and simple (cycling) exercises with moderate intensity (50-60% of VO2max). The exercises were performed in 3 ten-minute sets with 2-3 minutes of rest intervals for 30 minutes. Before and after the exercise, blood samples were collected to measure BDNF. Digits - symbols and Stroop colors-word cognitive tests were completed to assess the cognitive function. Data were analyzed with paired sample t test (P<0.05). The results showed no significant difference in level of BDNF between two types of exercise patterns (P=0.723). Also, analysis of Stroop color-word cognitive test showed that complex exercise pattern significantly improved cognitive function in comparison with simple exercise (P<0.05). It generally seems that exercise pattern (simple and complex) in adolescent girls (similar to those employed in this study) had not significant effect on BDNF response. However, complex exercise at least has more suitable significant effects on some aspects of cognitive function and can improve this function.

کلیدواژه‌ها [English]

  • Exercise Pattern
  • Complex Exercise
  • Simple Exercise
  • Brain-Derived Neurotrophic Factor
  • Cognitive Function
  • Non-Athlete Adolescent Girls

1.  Simon HB. Exercise and Health: Dose and Response, Considering Both Ends of the Curve. The American Journal of Medicine. 2015;128(11):1171-7.

2.  Perry Bruce D, Pollard Ronnie A, Blakley Toi L, Baker William L, Vigilante D. Childhood trauma, the neurobiology of adaptation, and “use‐dependent” development of the brain: How “states” become “traits”. Infant Mental Health Journal. 1995;16(4):271-91.

3.  Imai K, Nakajima H. Exercise and Nervous System. In: Mechanosensitivity in Cells
and Tissues. Mechanosensitivity of the Nervous System. A.Kamkin and I.Kiseleva (eds.)
Springer, 2008. p. 299–318.

4.  Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in neurosciences. 2002;25(6):295-301.

5.  Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology. 2001;63(1):71-124.

6.  Huang T, Larsen KT, Ried-Larsen M, Moller NC, Andersen LB. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scandinavian journal of medicine & science in sports. 2014;24(1):1-10.

7.  Molteni R, Zheng JQ, Ying Z, Gomez-Pinilla F, Twiss JL. Voluntary exercise increases axonal regeneration from sensory neurons. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(22):8473-8.

8.  Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in neurosciences. 2007;30(9):464-72.

9.  Landers, D. M., & Arent, S. M. Physical activity and mental health. Handbook of sport psychology2. 2001. 740-765.

10. Korol DL, Gold PE, Scavuzzo CJ. Use it and boost it with physical and mental activity. Hippocampus. 2013;23(11):1125-35.

11. Piepmeier AT, Etnier JL. Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science. 2015;4(1):14-23.

12. Tomporowski PD, McCullick B, Pendleton DM, Pesce C. Exercise and children's cognition: The role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science. 2015;4(1):47-55.

13. Kawashima R, Matsumura M, Sadato N, Naito E, Waki A, Nakamura S, et al. Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements--a PET study. The European journal of neuroscience. 1998;10(7):2254-60.

14. Park J-W, Kwon YH, Lee MY, Bai D, Nam K-S, Cho YW, et al. Brain activation pattern according to exercise complexity: a functional MRI study. NeuroRehabilitation. 2007;23(3):283-8.

15. Rehfeld K, Hoekelmann A, Lueders A, Kaufmann J and Mueller NG . The effects of six-month exercise programs on structural changes in gray and white matter volume and balance abilities in senior citizens: the case for dance training. Frontiers in Human Neuroscience. Conference Abstract: XII International Conference on Cognitive Neuroscience (ICON-XII). 2015.

16. Klintsova AY, Dickson E, Yoshida R, Greenough WT. Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Research. 2004;1028(1):92-104.

17. Budde H, Voelcker-Rehage C, Pietraßyk-Kendziorra S, Ribeiro P, Tidow G. Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters. 2008;441(2):219-23.

18. Cortis C, Tessitore A, Perroni F, Lupo C, Pesce C, Ammendolia A, et al. Interlimb coordination, strength, and power in soccer players across the lifespan. Journal of strength and conditioning research / National Strength & Conditioning Association. 2009;23(9):2458-66.

19. Saucedo Marquez CM, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of applied physiology (Bethesda, Md : 1985). 2015;119(12):1363-73.

20. Kimura K, Hozumi N. Investigating the acute effect of an aerobic dance exercise program on neuro-cognitive function in the elderly. Psychology of Sport and Exercise. 2012;13(5):623-9.

21. Ferris LT, Williams JS, Shen C-L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and science in sports and exercise. 2007;39(4):728-34.

22. Gustafsson G, Lira CM, Johansson J, Wisén A, Wohlfart B, Ekman R, et al. The acute response of plasma brain-derived neurotrophic factor as a result of exercise in major depressive disorder. Psychiatry Research. 2009;169(3):244-8.

23. Rojas Vega S, Strüder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research. 2006;1121(1):59-65.

24. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, et al. High impact running improves learning. Neurobiology of Learning and Memory. 2007;87(4):597-609.

25. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports medicine (Auckland, NZ). 2010;40(9):765-801.

26. Schmidt-Kassow M, Schadle S, Otterbein S, Thiel C, Doehring A, Lotsch J, et al. Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. Neuroreport. 2012;23(15):889-93.

27. Berchtold NC, Kesslak JP, Pike CJ, Adlard PA, Cotman CW. Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. The European journal of neuroscience. 2001;14(12):1992-2002.

28. Bos I, Jacobs L, Nawrot TS, de Geus B, Torfs R, Int Panis L, et al. No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neuroscience Letters. 2011;500(2):129-32.

29. Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm A-C. Long-Term Environmental Enrichment Leads to Regional Increases in Neurotrophin Levels in Rat Brain. Experimental Neurology. 2000;164(1):45-52.

30. Moreau D. Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement. Educational Psychology Review. 2015;27(3):475-82.

31. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology. 2009;94(10):1062-9.

32. Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiology of Learning and Memory. 2008;89(3):312-23.

33. Cooper SB, Bandelow S, Nute ML, Dring KJ, Stannard RL, Morris JG, et al. Sprint-based exercise and cognitive function in adolescents. Preventive Medicine Reports. 2016;4:155-61.

34. Lin T-W, Chen S-J, Huang T-Y, Chang C-Y, Chuang J-I, Wu F-S, et al. Different types of exercise induce differential effects on neuronal adaptations and memory performance. Neurobiology of Learning and Memory. 2012;97(1):140-7.

35. Griffin ÉW, Mullally S, Foley C, Warmington SA, O'Mara SM, Kelly ÁM. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior. 2011;104(5):934-41.

36. Brisswalter J, Collardeau M, René A. Effects of Acute Physical Exercise Characteristics on Cognitive Performance. Sports Medicine. 2002;32(9):555-66.

37. Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience. 2004;20(10):2580-90.

38. Best JR. Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise. Developmental review : DR. 2010;30(4):331-55.