The Effect of Aerobic Exercise on PGC-1α and FNDC5 Gene Expression in Diabetic Male Rats

Authors

1 PhD Student of Biochemistry and Sport Metabolism, Faculty of Physical Education and Sport Sciences, Guilan University, Rasht, Iran

2 Professor of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran

3 Associate Professor of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran

4 PhD Student of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran

Abstract

Change in adipose tissue phenotype caused by exercise training is a new theory manifested as the result of muscle FNDC5 gene expression. The aim of the present study was to investigate the effect of aerobic exercise on PGC-1α and FNDC5 gene expression of diabetic male rats. In this study, 18 diabetic male rats (12 weeks old, weight 220-240 gr) were divided into three groups: immediately after aerobic exercise (AE0) (n=6), 2 hours after aerobic exercise (AE2) (n=6) and control (C) (n=5). Both aerobic exercise (AE) groups exercised on the treadmill with 60-65% VO2max for 40 minutes. Real time PCR method was used to examine the mRNA relative expression of FNDC5 and PGC-1α genes of muscle tissue. ANOVA and Tukey post hoc test were used to analyze data at significance level of 0.05. Data analysis showed a significant difference in PGC-1α gene expression among the groups (P≤0.01.) Tukey test showed that PGC-1α gene expression significantly increased in the immediately after aerobic exercise (AE0) group compared to the control group (P≤0.01). However, there were no significant differences in FNDC5 gene expression among the groups (P>0.01). Therefore, the results of this study showed that despite PGC-1α expression, aerobic exercise has no effects on the FNDC5 gene expression in diabetic male rats.

Keywords


1.Boström P1, Wu JJedrychowski MPKorde AYe LLo JCRasbach KABoström EAChoi JHLong JZKajimura SZingaretti MCVind BFTu HCinti S,Højlund KGygi SPSpiegelman BM. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012 Jan 26;481(7382):PP:463-8.
2.Calcutt, N. A. (2004). Modeling diabetic sensory neuropathy in rats. In Pain Research . Humana Press:PP:55-65.
3.Choi, Y. K., Kim, M. K., Bae, K. H., Seo, H. A., Jeong, J. Y., Lee, W. K., ... & Park, K. G. (2013). Serum irisin levels in new-onset type 2 diabetes. Diabetes research and clinical practice, 100(1):PP: 96-101.
4.Coskun, O., Ocakci, A., Bayraktaroglu, T., & Kanter, M. (2004). Exercise Training Prevents and Protects Streptozotocin-Induced Oxidative Stress and. BETA.-Cell Damage in Rat Pancreas. The Tohoku journal of experimental medicine, 203(3):PP: 145-154.
5.Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., ... & Kahn, C. R. (2009). Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine, 360(15):PP: 1509-1517.
6.De Feyter, H. M., Praet, S. F., van den Broek, N. M., Kuipers, H., Stehouwer, C. D., Nicolay, K., ... & van Loon, L. J. (2007). Exercise training improves glycemic control in long-standing nsulin-treated type 2 diabetic patients.Diabetes Care, 30(10):PP: 2511-2513.
7.Høydal, Morten A., Ulrik Wisløff, Ole J. Kemi, and Øyvind Ellingsen. (2007). "Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training." European Journal of Cardiovascular Prevention & Rehabilitation 14, no. 6:PP: 753-760.
8.Huh, J. Y., Panagiotou, G., Mougios, V., Brinkoetter, M., Vamvini, M. T., Schneider, B. E., & Mantzoros, C. S. (2012). FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, 61(12):PP: 1725-1738.
9.Huh, J. Y., Mougios, V., Kabasakalis, A., Fatouros, I., Siopi, A., Douroudos, I. I., ... & Mantzoros, C. S. (2014). Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. The Journal of Clinical Endocrinology & Metabolism, 99(11):PP: 2154-2161.
10.Liang, H., & Ward, W. F. (2006). PGC-1α: a key regulator of energy metabolism. Advances in physiology education, 30(4):PP: 145-151.
11.Liu, J. J., Wong, M. D., Toy, W. C., Tan, C. S., Liu, S., Ng, X. W., ... & Lim, S. C. (2013). Lower circulating irisin is associated with type 2 diabetes mellitus.Journal of Diabetes and its Complications, 27(4):PP:365-369.
12.Mahajan, R. D., & Patra, S. K. (2013). Irisin, a Novel Myokine Responsible for Exercise Induced Browning of White Adipose Tissue. Indian Journal of Clinical Biochemistry, 28(1):PP:102-103.
13..Metcalfe L. (2004). Monitoring skills: diabetes. Nurse Prescriber, 1(2):PP:1-6.
14.Norheim, F., Langleite, T. M., Hjorth, M., Holen, T., Kielland, A., Stadheim, H. K., ... & Drevon, C. A. (2014). The effects of acute and chronic exercise on PGC‐1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS Journal, 281(3):PP:739-749.
15.Qian, S. W., Tang, Y., Li, X., Liu, Y., Zhang, Y. Y., Huang, H. Y., ... & Tang, Q. Q. (2013). BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proceedings of the National Academy of Sciences, 110(9):PP:798-807.
16.Pedersen, B. K., Åkerström, T. C., Nielsen, A. R., & Fischer, C. P. (2007). Role of myokines in exercise and metabolism. Journal of applied physiology,103(3):PP:1093-1098.
17..Pedersen, B. K. (2009). The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. The Journal of physiology, 587(23):PP: 5559-5568.
18Pedersen, B. K. (2011). Muscles and their myokines. The Journal of experimental biology, 214(2):PP: 337-346.
19.Pekkala, S., Wiklund, P. K., Hulmi, J. J., Ahtiainen, J. P., Horttanainen, M., Pöllänen, E., ... & Cheng, S. (2013). Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health?. The Journal of physiology, 591(21):PP:5393-5400.
20..Praet, S. F., & van Loon, L. J. (2009). Exercise therapy in type 2 diabetes.Acta diabetologica, 46(4):PP:263-278.
21.Praet, S. F., & van Loon, L. J. (2007). Optimizing the therapeutic benefits of exercise in type 2 diabetes. Journal of applied physiology, 103(4):PP:1113-1120.
22.Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., & Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92 (6):PP:829-839.
23.Rodgers, J. T., Lerin, C., Gerhart-Hines, Z., & Puigserver, P. (2008). Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS letters, 582(1):PP: 46-53.
24.Roca-Rivada, A., Castelao, C., Senin, L. L., Landrove, M. O., Baltar, J., Crujeiras, A. B., ... & Pardo, M. (2013). FNDC5/irisin is not only a myokine but also an adipokine. PloS one, 8(4):PP:e60563.
25.Soyal, S., Krempler, F., Oberkofler, H., & Patsch, W. (2006). PGC-1α: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes.Diabetologia, 49(7):PP:1477-1488.
26.Timmons, J. A., Baar, K., Davidsen, P. K., & Atherton, P. J. (2012). Is irisin a human exercise gene?. Nature, 488(7413):PP:9-10.
27.van Marken Lichtenbelt, W. D., Vanhommerig, J. W., Smulders, N. M., Drossaerts, J. M., Kemerink, G. J., Bouvy, N. D., ... & Teule, G. J. (2009). Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine, 360(15):PP: 1500-1508.
28.Zanuso, S., Jimenez, A., Pugliese, G., Corigliano, G., & Balducci, S. (2010). Exercise for the management of type 2 diabetes: a review of the evidence. Acta diabetologica, 47(1):PP:15-22.