بررسی میزان تغییرات آنزیم‌های آنتی‌اکسیدانی بافت ریه پس از تمرین استقامتی همراه با مصرف بربرین کلراید در رت‌های ویستار دیابتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه آزاد اسلامی واحد بروجرد، بروجرد، ایران

2 دانشیار، دانشکدۀ علوم ورزشی، دانشگاه رازی، کرمانشاه، ایران

3 استاد، دانشکدۀ علوم ورزشی، دانشگاه آزاد اسلامی واحد تهران مرکز، تهران، ایران

4 دانشیار، دانشکدۀ پزشکی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران

چکیده

 
تمرین هوازی و بربرین کلراید هر دو خاصیت آنتی‌اکسیدانی دارند، بنابراین پژوهش حاضر درصدد بررسی میزان تغییرات آنزیم‌های آنتی‌اکسیدانی بافت ریه پس از تمرین استقامتی همراه با مصرف بربرین کلراید در رت‌های ویستار دیابتی بود. به این منظور، 40 سر رت نر بالغ نژاد ویستار 200 تا250 گرمی به‌صورت تصادفی در 5 گروه کنترل سالم، کنترل دیابتی (با تزریق STZ)، تجربی دیابتی+تمرین بدنی، تجربی دیابتی+مصرف بربرین (mg/kg 50)، تجربی دیابتی+تمرین بدنی+ مصرف بربرین قرار گرفتند. 24 ساعت پس از آخرین جلسۀ تمرین، حیوانات با استفاده از تزریق درون‌صفاقی کتامین بی‌هوش شده و بافت ریه به‌منظور سنجش تغییرات آنزیم‌های آنتی‌اکسیدانی سوپراکسید دیسموتاز، کاتالاز و گلوتاتیون پراکسیداز جدا شد. از آزمون تی زوجی و آزمون تحلیل واریانس به‌منظور تجزیه‌وتحلیل داده‌ها با استفاده از نرم‌افزار SPSS (نسخۀ 22) و در سطح 05/0=α استفاده شد. نتایج نشان داد که نسبت به گروه کنترل میزان فعالیت‌های آنزیم CAT، SOD و GPX در تمامی گروه‌های تجربی به‌طور معناداری بالاتر بود (001/0=P). اثر مداخله در گروه دیابتی+تمرین+بربرین در مقایسه با گروه دیابتی+تمرین و گروه دیابتی+بربرین به‌طور معناداری بالاتر بود. نتیجۀ نهایی اینکه تمرین استقامتی و مصرف بربرین کلراید می‌تواند سبب افزایش معنادار فعالیت آنزیم‌های آنتی‌اکسیدانی بافت ریه در رت‌های دیابتی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Changes in Lung Tissue Antioxidant Enzymes after Endurance Training with The Berberine Chloride Usage in Diabetic Wistar Rats

نویسندگان [English]

  • Elham Farhadfar 1
  • Naser Behpour 2
  • Mohammad Ali Azarbaaeijani 3
  • Ali Moradi 4
1 Ph.D student, Islamic Azad University, Boroujerd Branch, Boroujerd, Iran
2 Associate Professor, Faculty of physical education and sport sciences. Razi University, Kermanshah, Iran
3 Professor, Islamic Azad University, Tehran Branch, Tehran, Iran
4 Associate Professor, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
چکیده [English]

 
Aerobic training and berberine chloride both have antioxidant characteristics, therefore the present study aimed to evaluate the changes in lung tissue antioxidant enzymes after endurance training with the use of berberine chloride in diabetic vestibular rats. For this purpose, 40 adult male Wistar rats weighing approximately 200-250 g were randomly divided into 5 groups including healthy control ,diabetic control group (with STZ injection), diabetic experimental group+physical Exercise, diabetic experimental group + berberine Intake (50 mg/kg), diabetic experimental group+physical exercise+berberine Intake. 24 hours after the last exercise session, the animals were anesthetized with an intraperitoneal injection of Ketamine and lung tissue was harvested to measure the antioxidant enzyme activity of superoxide dismutase, catalase, and glutathione peroxidase. Paired t-test and ANOVA were used to analyze the data using SPSS software (version 22) with significant level α=0.05. The results showed that compare to control group, the level of CAT, SOD and GPX activity was significantly higher in all of the experimental groups (P=0.001). In comparison to the diabetic + training group and the diabetic + berbine group, the effects of intervention was significantly higher in the diabetic+training+berberine group. The final conclusion indicated that endurance training with berberin chloride consumption can cause a significant increase in the anti-oxidant enzyme activity in the lung tissue of diabetic rats.

کلیدواژه‌ها [English]

  • Berberine chloride
  • Catalase
  • Diabetes mellitus
  • Glutathione peroxidase
  • Superoxide dismutase
  1.  

    1. Cefalu, W.T., Medical management of diabetes mellitus. 2000: CRC Press.
    2. Cooper, B., et al., Lung function in patients with diabetes mellitus. Respiratory medicine, 1990. 84(3): p. 235-239.
    3. Kodolova, I., L. Lysenko, and B. Saltykov, Changes in the lungs in diabetes mellitus. Arkhiv patologii, 1982. 44(7): p. 35-40.
    4. Brownlee, M., H. VLASSARA, and A. Cerami, Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Annals of internal medicine, 1984. 101(4): p. 527-537.
    5. OFUWE, A.F., K. Kida, and W.M. Thurlbeck, Experimental diabetes and the lung. Am Rev Respir Dis, 1988. 137: p. 162-166.
    6. Maritim, A., a. Sanders, and J. Watkins Iii, Diabetes, oxidative stress, and antioxidants: a review. Journal of biochemical and molecular toxicology, 2003. 17(1): p. 24-38.
    7. Kangralkar, V., S.D. Patil, and R. Bandivadekar, Oxidative stress and diabetes: a review. International Journal of Pharmaceutical Applications, 2010. 1(1): p. 38-45.
    8. Marvisi, M., et al., Pulmonary complications in diabetes mellitus. Recenti progressi in medicina, 1996. 87(12): p. 623-627.
    9. McLeay, Y., et al., Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation. Journal of the international society of sports nutrition, 2017. 14(1): p. 1-8.
    10. McCord, J.M., Superoxide radical: controversies, contradictions, and paradoxes. Proceedings of the Society for Experimental Biology and Medicine, 1995. 209(2): p. 112-117.
    11. Ceriello, A., Oxidative stress and glycemic regulation. Metabolism, 2000. 49(2): p. 27-29.
    12. Baynes, J.W. and S.R. Thorpe, Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 1999. 48(1): p. 1-9.
    13. Saxena, A.K., et al., Impaired antioxidant status in diabetic rat liver: effect of vanadate. Biochemical pharmacology, 1993. 45(3): p. 539-542.
    14. Fattahi Bafghi, A., H.M. Homaee, and M.A. Azarbayjani, Effects of high intensity interval training and curcumin supplement on antioxidant enzyme in heart tissue of diabetic rats. Iranian Journal of Diabetes and Obesity, 2016. 8(3): p. 135-141.
    15. Almani, S.A., et al., Free radical scavenging activity of Berberine in acetaminophen induced liver injury. International Journal of Surgery and Medicine, 2017. 3(1): p. 27-36.
    16. Maechler, P., L. Jornot, and C.B. Wollheim, Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. Journal of Biological Chemistry, 1999. 274(39): p. 27905-27913.
    17. Tiwari, B.K., et al., Markers of oxidative stress during diabetes mellitus. Journal of biomarkers, 2013. 2013.
    18. Pitocco, D., et al., Oxidative stress, nitric oxide, and diabetes. The review of diabetic studies: RDS, 2010. 7(1): p. 15.
    19. Ning, G., et al., Progress in diabetes research in China. Journal of Diabetes, 2009. 1(3): p. 163-172.
    20. Wang, Y., et al., Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet-and streptozotocin-induced diabetic rats. Metabolism, 2011. 60(2): p. 298-305.
    21. Derosa, G., P. Maffioli, and A.F. Cicero, Berberine on metabolic and cardiovascular risk factors: an analysis from preclinical evidences to clinical trials. Expert opinion on biological therapy, 2012. 12(8): p. 1113-1124.
    22. Amritpal, S., et al., Berberine: alkaloid with wide spectrum of pharmacological activities. Journal of Natural Products (India), 2010. 3: p. 64-75.
    23. Ashraf, H., et al., Evaluation of aqueous extract of Berberis Integerrima root on the testis tissue and testosterone levels in stereptozotocine (stz) induced diabetic rats. Qom University of Medical Sciences Journal, 2013. 7(4): p. 28-35.
    24. KALALIANMOGHADAM, H., et al., THE EFFECT OF BERBERINE CHLORIDE ON HIPPOCAMPUS OXIDATIVE STRESS OF STREPTOZOTOCIN-DIABETIC RATS. 2014.
    25. Cicero, A.F. and A. Baggioni, Berberine and its role in chronic disease, in Anti-inflammatory Nutraceuticals and Chronic Diseases. 2016, Springer. p. 27-45.
    26. Xiao, D., et al., Berberine derivatives with different pharmacological activities via structural modifications. Mini Reviews in Medicinal Chemistry, 2018. 18(17): p. 1424-1441.
    27. Pan, X.-R., et al., Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes care, 1997. 20(4): p. 537-544.
    28. Yardley, J.E., et al., Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes care, 2013. 36(3): p. 537-542.
    29. Lesslie, M., Investigations of biologically relevant free radicals utilizing novel gas-phase analytical techniques. 2017.
    30. Alipour, M., I. Salehi, and F.G. Soufi, Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. Iranian red crescent medical journal, 2012. 14(4): p. 222.
    31. Farhangi, N., F. Nazem, and F. Zehsaz, Effect of endurance exercise on antioxidant enzyme activities and lipid peroxidation in the heart of the streptozotocin-induced diabetic rats. SSU_Journals, 2017. 24(10): p. 798-809.
    32. Chae, C., et al., RETRACTED: Treadmill exercise improves cognitive function and facilitates nerve growth factor signaling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase1/2 in the streptozotocin-induced diabetic rat hippocampus. 2009, Elsevier.
    33. Tsutsui, H., et al., Oxidative stress in cardiac and skeletal muscle dysfunction associated with diabetes mellitus. Journal of clinical biochemistry and nutrition, 2010. 48(1): p. 68-71.
    34. Sözmen, E.Y., et al., Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Archives of medical research, 2001. 32(4): p. 283-287.
    35. shirebrahimi, E., M.R. Ramezan poor, and M. Hejazi, A Comparison of the Effect of Eight Weeks Aerobic Training and Vitamin C Supplements Consumption on Antioxidant Enzymes in Men With Type 2 Diabetes. Quarterly of Horizon of Medical Sciences, 2018. 24(2): p. 103-110.
    36. Modir, M., et al., The effects of short and middle times aerobic exercise with high intensities on ingredients antioxidant in female Sprague Dawley rats. medical journal of mashhad university of medical sciences, 2014. 57(3): p. 587-595.
    37. Azizbeigi, K., et al., Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. Journal of Exercise Science & Fitness, 2014. 12(1): p. 1-6.
    38. Teixeira-Lemos, E., et al., Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovascular diabetology, 2011. 10(1): p. 12.
    39. Ozkaya, Y., et al., The effect of exercise on brain antioxidant status of diabetic rats. Diabetes & metabolism, 2002. 28(5): p. 377-384.
    40. Dong, C.-X., et al., Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L. Chemical and Pharmaceutical Bulletin, 2010. 58(4): p. 507-510.
    41. Golbidi, S., M. Badran, and I. Laher, Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Experimental diabetes research, 2011. 2012.
    42. Pereira, A.d.S., et al., Influence of aerobic exercise training on serum markers of oxidative stress in diabetic rats. Journal of physical education, 2016. 27.
    43. Mirzaei, B., Comparing the effects of acute exhaustive exercise on cardiac troponin T serum and malondialdehyde of heart tissue response levels of endurance trained young rats. Journal of Sport and Biomotor Sciences, 2013. 5(9): p. 16-24.
    44. Jamieson, D., et al., The relation of free radical production to hyperoxia. Annual review of physiology, 1986. 48(1): p. 703-719.
    45. Songstad, N.T., et al., Effects of high intensity interval training on pregnant rats, and the placenta, heart and liver of their fetuses. PloS one, 2015. 10(11): p. e0143095.