اثر یک دوره فعالیت ورزشی هوازی بر پراکسیداسیون لیپیدی و فعالیت آنزیم های آنتی اکسیدانی هیپوکامپ به دنبال ایسکمی- ریپرفیوژن مغزی در موش های صحرایی نر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه تربیت بدنی و علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه ایلام، ایلام، ایران

2 استادیار، گروه تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، تهران، ایران

3 دکتری فیزیولوژی ورزش، مرکز تحقیقات علوم اعصاب، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران

چکیده

ایسکمی مغزی با اختلالات متابولیکی گسترده‌ای در سلول‌های عصبی به ویژه نورون‌های هیپوکامپ همراه است. شواهد نشان می‌دهد که فعالیت ورزشی اثرات نوروپروتکتیو دارد و می‌تواند از مغز در برابر آسیب‌های ناشی از ایسکمی محافظت کند. این مطالعه با هدف بررسی اثر فعالیت ورزشی پیش از ایسکمی بر پراکسیداسیون لیپیدی و فعالیت آنزیم‌های آنتی‌اکسیدانی هیپوکامپ صورت گرفته است. تعداد 21 سر موش صحرایی نر نژاد ویستار به طور تصادفی به سه گروه تقسیم شدند: شم، ورزش+ ایسکمی و ایسکمی. رت‌های گروه ورزش، به مدت 4 هفته، 5 روز در هفته بر روی تردمیل دویدند. ایسکمی مغزی با انسداد شریان‌های کاروتید مشترک به مدت 20 دقیقه ایجاد شد. سطوح مالون‌دی‌آلدئید (MDA) و میزان فعالیت آنزیم‌های آنتی‌اکسیدان (SOD، GPX، CAT) با استفاده از کیت‌های مخصوص اندازه‌گیری شد. نتایج نشان داد که فعالیت ورزشی موجب کاهش معنی‌دار غلظت MDA و افزایش معنی‌دار فعالیت آنزیم‌های آنتی‌اکسیدان در هیپوکامپ شد. بطور کلی، فعالیت ورزشی با افزایش فعالیت آنزیم‌های آنتی‌اکسیدان می‌تواند در برابر آسیب‌ها و اختلالات ناشی از ایسکمی مغزی اثرات محافظتی داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The protective effect of exercise on lipid peroxidation and antioxidant enzymes activity in hippocampus following the cerebral ischemia in male rats

نویسندگان [English]

  • Nabi Shamsaei 1
  • Hadi Abdi 2
  • Babak Farzad 3
1 Department of Physical Education & Sports Science, Faculty of Literature and Humanities, Ilam University, Ilam, Iran
2 Department of Physical Education & Sports Science, Payam-e Noor University, Tehran, Iran
3 Neuroscience Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
چکیده [English]

Cerebral ischemia is associated with extensive metabolic disorders in the nerve cells especially the hippocampal neurons. Evidence suggests that exercise have a neuroprotective effect and can protect the brain from ischemic injury. This study aimed to investigate effect of pre-ischemic exercise on lipid peroxidation and antioxidant enzymes activity in hippocampus. 21 male Wistar rats were randomly divided into three groups: sham, exercise + ischemia and ischemia. The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia induced by occlusion both common carotid arteries for 20 minutes. Malondialdehyde (MDA) and antioxidant enzymes activity (SOD, GPX, and CAT) was measured using a special Kits. The results showed that exercise led to significant decrease MDA concentration and a significant increase antioxidant enzymes activity in the hippocampus. In conclusion, exercise by increasing the antioxidative enzymes activity may have a protective effect against ischemia-induced injuries and disorders.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Exercise
  • Hippocampus
  • Ischemia
  • Lipid peroxidation

1- Albasser MM, Amin E, Lin T-CE, Iordanova MD. Aggleton JP. (2012). Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory. Behav Neurosci, 126(5), 659-69.

2- Camiletti-Moirón D, Aparicio V, Aranda P, Radak Z. (2013). Does exercise reduce brain oxidative stress? A systematic review. Scand J Med Sci Sports, 23(4): e202-12.

3- Cechetti F, Worm PV, Elsner VR, Bertoldi K, Sanches E, Ben J, et al. (2012). Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem, 97(1): 90-6.

4- Chan PH. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 21(1):2-14.

5- Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. (2011). Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal, 14(8):1505-17.

6- Dimyan MA, Cohen, LG. (2011). Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol, 7:76–85.

7- Doyle KP, Simon RP, Stenzel-Poore MP. (2008). Mechanisms of ischemic brain damage. Neuropharmacology, 55(3):310-8.

8- Duzova HKarakoc, YEmre, MHDogan, ZYKilinc, E. (2009). Effects of acute moderate and strenuous exercise bouts on IL-17 production and inflammatory response in trained rats. J Sports Sci Med, 8(2): 219-24.

9- Erfani S, Khaksari M, Oryan Sh, Shamsaei N, Aboutaleb N, Nikbakht F. (2015). Nampt/PBEF/Visfatin exerts neuroprotective effects against ischemia/reperfusion injury via modulation of Bax/Bcl-2 ratio and prevention of Caspase-3 activation. J Mol Neurosci, 56(1):237-43.

10- Flansbjer UB, Miller M, Downham D, Lexell J. (2008). Progressive resistance training after stroke: effects on muscle strength, muscle tone, gait performance and perceived participation. J Rehabil Med, 40(1): 42-8.

11- Hamakawa M, Ishida A, Tamakoshi K, Shimada H, Nakashima H, Noguchi T, et al. (2013). Repeated short-term daily exercise ameliorates oxidative cerebral damage and the resultant motor dysfunction after transient ischemia in rats. J ClinBiochemNutr, 53(1):8-14.

12- Heo JH, Han SW, Lee SK. (2005). Free radicals as triggers of brain edema formation after stroke. Free RadicBiol Med, 39(1):51-70.

13- Kakita T, Suzuki M, Takeuchi H, Unno M, Matsuno S. (2002). Significance of xanthine oxidase in the production of intracellular oxygen radicals in an in-vitro hypoxia-reoxygenation model. J Hepatobiliary Pancreat Surg, 9(2):249-55.

14- Kevin C, Kregel David, L. (2006). Resource Book for the Design of Animal Exercise Protocols. American Physiological Society, 23-57.

15- Kirino T. (1982). Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res, 239:57–69.

16- Langhammer B, Lindmark B. (2012). Functional exercise and physical fitness post stroke: The importance of exercise maintenance for motor control and physical fitness after stroke. Stroke Res Treat, 2012.

17- Laufs U, Werner N, Link A, Endres M, Wassmann S, JürgensK, et al. (2004). Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation, 109(2):220-26.

18- Obrenovitch TP. (2008). Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev, 88(1):211-47.

19- Petito CK, Torres-Munoz J, Roberts B, Olarte JP, Nowak Jr TS, Pulsinelli WA. (1997). DNA fragmentation follows delayed neuronal death in CA1 neurons exposed to transient global ischemia in the rat. J Cereb Blood Flow Metab, 17:967-76.

20- Pradillo JM, Hurtado O, Romera C, Cárdenas A, Fernández-Tomé P, Alonso-Escolano D, and et al. (2006). TNFR1 mediates increased neuronal membrane EAAT3 expression after in vivo cerebral ischemic preconditioning. Neuroscience, 138(4):1171-78.

21- Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, et al. (2006). Effect of Saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food, 9(2):246-53.

22- Silver IA, Erecińska M. (1994). Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo, hypo-, and hyperglycemic animals. J Neurosci, 14(8):5068-76.

23- Wilson JX. (1997). Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol, 75(10-11):1149-63.

24- Yokobori S, Mazzeo AT, Hosein K, Gajavelli S, Dietrich WD, Bullock MR. (2013). Preconditioning for Traumatic Brain Injury. Transl Stroke Res, 4(1):25-39.

25- Zhang P, Zhang Q, Pu H, Wu Y, Bai Y, Vosler P. (2011). Very early-initiated physical rehabilitation protects against ischemic brain injury. Front Biosci (Elite Ed), 4(1):2476-89.