تأثیر یک دوره تمرینات استقامتی با هدف ممانعت از پیری سلولی بر فعالیت آنزیم تلومراز بافت قلب و لنفوسیت های خون محیطی رت های نر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزشی. پژوهشکده طب ورزشی. پژوهشگاه تربیت بدنی و علوم ورزشی. تهران.ایران

2 استاد فیزیولوژی ورزشی، دانشکدۀ تربیت بدنی، دانشگاه تهران

3 دانشیار گروه فیزیولوژی و علوم ورزشی، دانشگاه تهران، تهران، ایران

چکیده

چکیده
هدف پژوهش حاضر بررسی تأثیر 16 هفته تمرین استقامتی با شدت متوسط بر محتوی آنزیم تلومراز بافت قلب و لنفوسیت‌های خون محیطی رت‌های نر بود. بدین منظور رت‌های تهیه شده از انستیتوی پاستور ایران به صورت تصادفی به دو گروه کنترل (8=n) و ورزشی(8=n) تقسیم شدند. مدت زمان دو هفته برای سازگاری با محیط و تغییر ریتم‌های بیولوژیک (هفته اول) و آشنایی با تردمیل (هفته دوم) در نظر گرفته شد. پس از گذشت دو هفته پروتکل اصلی، شامل یک جلسه فعالیت استقامتی در روز به مدت پنج روز در هفته شروع شد. گروه تجربی به مدت 16 هفته تحت تأثیر تمرینات استقامتی با شدت متوسط قرار گرفتند. در طول هشت هفته اول سرعت تردمیل از 12 متر در دقیقه به 25 متر دقیقه و زمان از 15 دقیقه به 50 دقیقه رسید و این شدت تمرین در طی هشت هفته دوم ثابت نگه داشته شد. پس از اتمام دوره در حالت ناشتا و روز بعد از آخرین جلسه تمرین نمونه‌های مورد نیاز از رت‌ها جمع‌آوری شدند. نتایج نشان داد که تمرینات استقامتی با شدت متوسط موجب افزایش معنادار فعالیت تلومراز در بافت قلبی (0.004=p) و لنفوسیت‌های خون محیطی (0.004=p) شد. به طور کلی می‌توان پیشنهاد داد که فعالیت بدنی منظم با شدت متوسط (65-60%Vo2max ) منجر به فعالسازی آنزیم تلومراز و تثبیت طول تلومر می‌شود و ورزش و فعالیت بدنی از طریق افزایش فعالیت تلومراز در بافت‌های بدن می‌تواند قابلیت زیست سلول، ثبات ژنتیک را بالا ببرد و اثرات ضد پیری خود را بگذارد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of a endurance training period with cellular Anti-aging purpose on telomerase enzyme content in cardiac tissue and peripheral blood lymphocytes in rats

نویسندگان [English]

  • Hamze Akbari Boukani 1
  • Ali Asghar Ravasi 2
  • Mohamad Reza Kordi 3
1 Department of exercise physiology, Sport Medicine institute, Sport Science Research Center, Tehran, IRAN
2 Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
3 Associate Professor of Physiology and Sport Sciences, University of Tehran, Tehran, Iran
چکیده [English]

Abstract
The purpose of present study was the effect of a endurance training period with cellular Anti-aging purpose on telomerase enzyme content in cardiac tissue and peripheral blood lymphocytes in male rats. For this purpose, rats provided from Pasteur institude of Iran were randomly divided in two group, control (n=8) and exercised groupe (n=8). Two week use for environmental adaptation and biological rhythm (first week) and treadmill familiarity (second week). Then the major protocol of this study began after first two week that include a session endurance exercise per day, five day/week. The intensity of exercise was moderate that exercise group do it for 16 weeks while control group was sedentary in this period. Durig first eight weeks the speed of running on treadmill increased from 15 m/min to 25 m/min and time from 15 min to 25 min progressively but this intensity of exercise fixed during second eight week. One day after end of protocol in fasing situation samoles were collected. The results showed the moderate indurance training significant increased in telomerase content in cardiac tissue (p= 0/004) and peripheral blood lymplocytes (p= 0/004). In summary, the results suggested that the moderate (60-65 % vo2max) and regular physical activity indused activation in telomerase and telomere length stability and exercise and physical activity by telomerase activation in body tissue could increased cellular viability and genomic stability and finally have anti-aging effect.

Key word: Aging, long term exercise, telomere and telomerase

کلیدواژه‌ها [English]

  • aging
  • long term exercise
  • telomere and telomerase
  1. Shariatzade M. The effect of 12 week endurance training on plasma gerlin, PYY-3-36, food intake and weight in fatty rarts. Journal of exercise and biology science,. No: 14, 2012.
  2. Adams J, Martin-Ruiz C, Pearce MS, White M, Parker L, von Zglinicki T. No association between socio-economic status and white blood cell telomere length. Aging Cell. 6:125–128, 2007.
  3. Ambrosio F, F. Kadi, J. Lexell, G. Kelley Fitzgerald, M. L. Boninger, and J. Huard. The effect of muscle loading on skeletal muscle regenerative potential: an update of current research findings relating to aging and neuromuscular pathology. American Journal of Physical Medicine and Rehabilitation, vol. 88, no. 2, pp. 145–155, 2009.
  4. Benetos A, Okuda K, Lajemi M, et al. Telomere length as an indica­tor of biological aging—the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension, 37:381–385, 2001.
  5. Bekaert S, De Meyer T, Rietzschel ER, et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 6:639–647, 2007.
  6. Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 168:154–158. 2008.
  7. Chernova T, P. Nicotera, A.G. Smith. Heme deficiency is associated with senescence and causes suppression of N-methyl-D-aspartate receptor subunits expression in primary cortical neurons, Mol. Pharmacol. 69, 697–705, 2006.
  8. Decary S, Mouly V, Ben Hamida C et al. Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther 8:1429–1438, 1997.
  9. Decary S, Ben Hamida C, Mouly V et al (2000). Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromusc Disord 10:113–120
  10. De Meyer T, Rietzschel ER, De Buyzere ML, et al. Paternal age at birth is an important determinant offspring telomere length. Hum Mol Genet, 16:3097–3102, 2007.
  11. Dimri GP et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA, 92:9363.9367, 1995.
  12. Duncan EL et al. Senescence and immortalization of human cells. Biogerontology, 1:103.121, 2000.
  13. Epel E-S, E. H. Blackburn, J. Lin et al. Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17312–17315, 2004.
  14. Fitzpatrick AL, Kronmal RA, Gardner JP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 165:14–21, 2007.
  15. Gardner JP, Li S, Srinivasan SR, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation.111:2171–2172, 2005.
  16. Harris SE, Deary IJ, Maclntyre A, et al. The association between telomere length, physical health, cognitive ageing, and mortality in non-demented older people. Neurosci Lett. 406:260–264, 2006.
  17. Hunt SC, Chen W, Gardner JP, et al. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell. 7:451–458, 2008.
  18. Honda S, L.M. Hjelmeland, J.T. Handa. Senescence associated beta galactosidase activity in human retinal pigment epithelial cells exposed to mild hyperoxia in vitro, Br. J. Ophthalmol. 86, 159–162, 2002.
  19. Jiang H, E. Schiffer, Z. Song et al. Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11299–11304, 2008.
  20. Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension. 36:195–200, 2000.
  21. Kadi F, E. Ponsot, K. Piehl-Aulin et al. The effects of regular strength training on telomere length in human skeletal muscle. Medicine and Science in Sports and Exercise, vol. 40, no. 1, pp. 82–87, 2008.
  22. Kimura M, Cherkas LF, Kato BS, et al. Offspring’s leukocyte telo­mere length, paternal age, and telomere elongation in sperm. PLo Genet, 4:e37, 2008.
  23. Lee DC, Im JA, Kim JH, Lee HR, Shim JY. Effect of long-term hor­mone therapy on telomere length in postmenopausal women. Yonsei Med J. 2005;46:471–479.
  24. Ludlow, A.T; Witkowski, S;  Marshall, M.R;  Wang, J; Lima, L.CJ; Guth, L.M; Spangenburg, E.E; Roth, S.M. Chronic Exercise Modifies Age-Related Telomere Dynamics in a Tissue-Specific Fashion. J Gerontol A Biol Sci Med Sci (2012) 67 (9): 911-926.
  25. Matthew J. Laye, Thomas P. J. Solomon, Kristian Karstoft, Karin K. Pedersen, Susanne D. Nielsen and Bente K. Pedersen. ultra-long-distance running event mononuclear cells and skeletal muscle following an Increased shelterin mRNA expression in peripheral blood. J Appl Physiol 112:773-781, 2012.
  26. Nosaka K, Clarkson P-M. Muscle damage following repeated bouts of high force eccentric exercise. Medicine and Science in Sports and Exercise, vol. 27, no. 9, pp. 1263–1269,1995.
  27. Njajou OT, Cawthon RM, Damcott CM, et al. Telomere length is paternally inherited and is associated with parental lifespan. Proc Natl Acad Sci U S A. 104:12135–12139, 2007. 
  28. Ponsot E, J. Lexell, and F. Kadi. Skeletal muscle telomere length is not impaired in healthy physically active old women and men. Muscle and Nerve, vol. 37, no. 4, pp. 467–472, 2008.
  29. Puterman E, J. Lin, E. Blackburn, A. O’Donovan, N. Adler, and E. Epel. The power of exercise: buffering the effect of chronic stress on telomere length.  PLoS ONE, vol. 5, no. 5, Article ID e10837, 2010.
  30. Radak, Z; Taylor, A.W; Sasvari, M; Ohno, H; Horkay, B; Furesz, J; Gaal, D; Kanel, T. Telomerase activity is not altered by regular strenuous exercise in skeletal muscle or by sarcoma in liver of rats. Volume 6, Number 2, April 2001 , pp. 99-103(5).
  31. Rae DE, Vignaud A, Butler-browne GS, Thornell L-E, Sinclair-Smith C, Derman E.W, Lambert M.I, Collins M. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol, 109:323–330, 2010.
  32. Rainbow T. H. HoJessie S. M. ChanChong-Wen WangBenson W. M. Lau, Kwok Fai So, Li Ping YuenJonathan S. T. ShamCecilia L. W. Chan.  A Randomized Controlled Trial of Qigong Exercise on Fatigue Symptoms, Functioning, and Telomerase Activity in Persons with Chronic Fatigue or Chronic Fatigue Syndrome. Ann Behav Med. 2012, 44(2): 160–170.
  33. Renault V, Piron-Hamelin G, Forestier C, DiDonna S, Decary S, Hentati F, Saillant G, Butler-Browne GS & Mouly V. Skeletal muscle regeneration and the mitotic clock. Experimental Gerontology 35 711–719, 2000.
  34. Richards JB, Valdes AM, Gardner JP, et al. Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr. 86:1420–1425, 2007.
  35. Roth S-M, Martel G-F, Ivey F-M and et al. Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. Journals of Gerontology—Series A Biological Sciences and Medical Sciences, vol. 56, no. 6, pp. B240–B247, 2001.
  36. Roux AV, Ranjit N, Jenny NS, et al. Race/ethnicity and telomere length in the Multi-Ethnic Study of Atherosclerosis. Aging Cell. 8:251–257, 2009.
  37. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telo­mere shortening in atherosclerosis. Lancet. 358:472–473, 2001.
  38. Satyanarayana A et al. Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. EMBO J, 22:4003.4013, 2003.
  39.  Schmitt CA et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109:335.346, 2002.
  40. Song Z, G. von Figura, Y. Liu et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging cell, vol. 9, no. 4, pp. 607–615, 2010.
  41. Unryn BM, Cook LS, Riabowol KT. Paternal age is positively linked to telomere length of children. Aging Cell. 4:97–101, 2005.
  42. Vasile E et al. Differential expression of thymosin beta-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB J, 15:458.466, 2003.
  43. Vasan RS, Demissie S, Kimura M, et al. Association of leukocyte telomere length with circulating biomarkers of the renin-angioten­sin-aldosterone system: the Framingham Heart Study. Circulation. 117:1138–1144, 2008.
  44. Werner C, M. Hanhoun, T. Widmann et al. Effects of physical exercise onmyocardial telomere-regulating proteins, survival pathways, and apoptosis. Journal of the American College of Cardiology, vol. 52, no. 6, pp. 470–482, 2008.
  45. Werner C, T. F¨urster, T. Widmann et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation, vol. 120, no. 24, pp. 2438–2447, 2009.
  46. Woo J, Suen EW, Leung JC, Tang NL, Ebrahim S. Older men with higher self-rated socioeconomic status have shorter telomeres. Age Ageing. 38:553–558, 2009.