تأثیر دوازده هفته رژیم غذایی پرچرب و تمرین ورزشی با شدت متوسط بر مسیر KLF-15 / KLF-3 / فورین / CTRP-12 بافت چربی احشایی رت‌های نر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران.

2 دانشیار فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران.

3 استاد فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی ارومیه، ارومیه، ایران.

4 دانشیار فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران

چکیده

 
    از جمله فاکتورهای مقابله‌کننده با ریسک فاکتورهای متابولیکی، CTRP-12 است. چاقی با تنظیم مثبت فاکتورهای فورین و KLF-3 و تنظیم منفی KLF-15 در مهار CTRP-12 نقش بسزایی دارد. تمرین ورزشی بر پیام‌رسانی سلول‌های چربی تأثیرگذار است. ازاین‌رو هدف مطالعة حاضر بررسی تأثیر 12 هفته تمرین ورزشی با شدت متوسط (MICT) بر CTRP-12، فورین، KLF-3 و KLF-15 بافت چربی احشایی رت‌های نر چاق بود. 15 سر رت نر نژاد ویستار، ابتدا به 2 گروه تغذیه با غذای پرچرب (10 سر) و تغذیه با غذای استاندارد (5 سر) تقسیم شدند. پس از 12 هفته، مجدداً گروه تغذیه با غذای پرچرب به دو گروه MICT و HFD تقسیم شدند. برنامة تمرینی به مدت 12 هفته، 5 جلسه در هفته و با شدت 50-60 درصد حداکثر سرعت اجرا شد. مقادیر متغیرها به روش الایزا اندازه‌گیری شد. تجزیه‌وتحلیل داده‌ها با آزمون آماری ANOVA و نرم‌افزار پریزم 5 انجام گرفت. نتایج مطالعة حاضر نشان داد که HFD سبب افزایش معنا‌دار مقادیر فورین و KLF-3 بافت چربی احشایی شد (05/0P≤). 12 هفته تمرین MICT سبب کاهش معنا‌دار مقادیر فورین، KLF-3 و افزایش معنا‌دار KLF-15 نسبت به گروه HFD شد (05/0P≤). تغییرات CTRP-12 بین گروه‌های مختلف معنا‌دار نبود (386/0F=1.032 , P=). 12 هفته MICT مجزا از تغییرات CTRP-12، در کاهش ریسک فاکتورهای سلولی مضر بافت چربی (فورین و KLF-3) و افزایش فاکتورهای مفید بافت چربی (KLF-15) مؤثر است. ازاین‌رو پیشنهاد می‌شود افراد در معرض چاقی برای سازگاری بهتر سلولی، به تمرینات ورزشی با مدت زمان طولانی‌تر رو بیاورند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of 12 Weeks of High Fat Diet and Moderate Intensity Training on the KLF-15 / KLF-3 / Furin / CTRP-12 Pathway of Visceral Adipose Tissue in Male Rats

نویسندگان [English]

  • Setareh Amiri 1
  • Asghar Tofighi 2
  • Alireza Shirpoor 3
  • Javad Tolouei Azar 4
1 M.Sc. of exercise physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
2 Associate Professor of exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
3 Professor of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
4 Associate Professor of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
چکیده [English]

 
One of the factors that counteracts with risk factors of metabolic disorder is CTRP-12. Obesity plays an important role in the downregulation of CTRP-12 by positive regulation of furin and KLF-3 factors and negative regulation of KLF-15. Training affects adipocytes signaling. Therefore, the aim of the present study was to investigate the effect of 12 weeks of moderate intensity continuous training (MICT) on the KLF-15 / KLF-3 / furin / CTRP-12 of visceral adipose tissue in male obese rats. 15 male Wistar rats were divided into two groups: high fat diet (n=10) and standard diet (n=5). After 12 weeks, the high fat diet group was again divided into two groups: MICT and HFD. Training program was performed for 12 weeks, 5 sessions per week with intensity of 50-60% of maximum speed. The values of variables were measured by ELISA method. Data were analyzed using ANOVA and Prism 5 software. The results of this study showed that HFD significantly increased the amount of furin and KLF-3 in visceral adipose tissue (P≤0.05). The 12 weeks of MICT significantly decreased the levels of furin, KLF-3 and significantly increased KLF-15 compared with the HFD group (P≤0.05). Changes in CTRP-12 were not significant between groups (F = 1.032, P = 0.386). 12 weeks of MICT, apart from changes in CTRP-12, was effective in decreasing the risk of adipose tissue cellular factors (furin and KLF-3) and in increasing the beneficial factors of adipose tissue (KLF-15). Therefore, it is recommended that those exposed to obesity should get longer training sessions for better cellular adaptation.

کلیدواژه‌ها [English]

  • CTRP-12
  • furin
  • KLF-3
  • KLF-15
  • moderate intensity continuous training
1.            Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutrition & metabolism. 2016;13(1):15.
2.            Matsuzawa Y. Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nature clinical practice Cardiovascular medicine. 2006;3(1):35-42.
3.            Després J-P, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881-7.
4.            Neels JG, Olefsky JM. Inflamed fat: what starts the fire? Journal of Clinical Investigation. 2006;116(1):33.
5.            Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nature Reviews Immunology. 2011;11(2):85-97.
6.            Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology. 2011;11(2):98-107.
7.            Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Annals of the New York Academy of Sciences. 2010;1212(1).
8.            Flier J, Scherer P. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes. 2005;54(Suppl 1):6-7.
9.            Omidifar A, Toolabi K, Rahimipour A, Emamgholipour S, Shanaki M. The gene expression of CTRP12 but not CTRP13 is upregulated in both visceral and subcutaneous adipose tissue of obese subjects. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(4):2593-9.
10.         Enomoto T, Shibata R, Ohashi K, Kambara T, Kataoka Y, Uemura Y, et al. Regulation of adipolin/CTRP12 cleavage by obesity. Biochemical and biophysical research communications. 2012;428(1):155-9.
11.         Ogawa H, Ohashi K, Ito M, Shibata R, Kanemura N, Yuasa D, et al. Adipolin/CTRP12 protects against pathological vascular remodelling through suppression of smooth muscle cell growth and macrophage inflammatory response. Cardiovascular research. 2019.
12.         Fadaei R, Moradi N, Kazemi T, Chamani E, Azdaki N, Moezibady SA, et al. Decreased serum levels of CTRP12/adipolin in patients with coronary artery disease in relation to inflammatory cytokines and insulin resistance. Cytokine. 2019;113:326-31.
13.         Wong GW, Wei Z, Peterson JM. Method of treating diabetes by a CTRP12 polypeptide. Google Patents; 2016.
14.         Torres S, Fabersani E, Marquez A, Gauffin-Cano P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. European journal of nutrition. 2019;58(1):27-43.
15.         Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise-induced ‘browning’of adipose tissues. Metabolism. 2018;81:63-70.
16.         Rahmatollahi M, Ravasi A, Soori R, Onegh B, Dolati F. Adipolin and Insulin Resistance Response to Two Types of Exercise Training in Type 2 Diabetic Male Rats. Endocrinol Metab Int J. 2018;6(2):00152.
17.         Matoba K, Lu Y, Zhang R, Chen ER, Sangwung P, Wang B, et al. Adipose KLF15 controls lipid handling to adapt to nutrient availability. Cell reports. 2017;21(11):3129-40.
18.         Enomoto T, Ohashi K, Shibata R, Kambara T, Uemura Y, Yuasa D, et al. Transcriptional regulation of an insulin-sensitizing adipokine adipolin/CTRP12 in adipocytes by Krüppel-like factor 15. PloS one. 2013;8(12):e83183.
19.         Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends in endocrinology & metabolism. 2014;25(7):348-55.
20.         Rahmatollahi M, Ravasi A, Soori R. Effect of 8 Weeks of Low-Intensity Continuous Training on Plasma Adipolin, Insulin Resistance, and Weight of Fatty Fat-Filled Rats. Adv Obes Weight Manag Control. 2017;7(5):00211.
21.         Shen Y, Zhou H, Jin W, Lee H. Acute exercise regulates adipogenic gene expression in white adipose tissue. Biology of sport. 2016;33(4):381.
22.         Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutrition research reviews. 2010;23(2):270-99.
23.         Lee MO. Determination of the surface area of the white rat with its application to the expression of metabolic results. American Journal of Physiology-Legacy Content. 1929;89(1):24-33.
24.         Burniston JG. Adaptation of the rat cardiac proteome in response to intensity‐controlled endurance exercise. Proteomics. 2009;9(1):106-15.
25.         Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific reports. 2017;7(1):204.
26.         Ostler JE, Maurya SK, Dials J, Roof SR, Devor ST, Ziolo MT, et al. Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models. American journal of physiology Endocrinology and metabolism. 2014;306(6):E592-605.
27.         Lee S, Park Y, Dellsperger KC, Zhang C. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. American journal of physiology Heart and circulatory physiology. 2011;301(2):H306-14.
28.         Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep. 2017;7(1):204.
29.         Enomoto T, Ohashi K, Shibata R, Higuchi A, Maruyama S, Izumiya Y, et al. Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. Journal of Biological Chemistry. 2011;286(40):34552-8.
30.         Peterson JM, Seldin MM, Wei Z, Aja S, Wong GW. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2013;305(3):G214-G24.
31.         Shirvani H, Arabzadeh E. Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity. 2018:1-8.
32.         Wei Z, Peterson JM, Lei X, Cebotaru L, Wolfgang MJ, Baldeviano GC, et al. C1q/TNF-related protein-12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes. Journal of Biological Chemistry. 2012;287(13):10301-15.
33.         Hasegawa N, Fujie S, Horii N, Uchida M, Kurihara T, Sanada K, et al. Aerobic exercise training-induced changes in serum C1q/TNF-related protein levels are associated with reduced arterial stiffness in middle-aged and older adults. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2017:ajpregu. 00212.2017.
34.         Mirdar S, Arabzadeh E, Hamidian G. Effects of two and three weeks of tapering on lower respiratory tract in the maturing rat. Koomesh. 2015;16(3).
35.         Arabzadeh E, Mirdar S, Fathi Z. Measurement of levels of lung HIF-1α protein in response to tapering for 14-and 21-day with nigella sativa supplementation in maturing rat, with histological study. Sport Sciences for Health. 2015;11(2):195-202.
36.         Arabzadeh E, Mirdar S, Moradiani H. Nigella sativa supplementation attenuates exercise-induced bronchoconstriction in the maturing rat: a histometric and histologic study. Comparative Clinical Pathology. 2016;25(1):1-5.
37.         Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, et al. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. American journal of physiology-endocrinology and metabolism. 2006;291(1):E99-E107.
38.         Jelstad S, Ditta Valsdottir T, Johansen EI, Jensen Jr. Eight sessions of endurance training decrease fasting glucose and improve glucose tolerance in middle-aged overweight males. Archives of physiology and biochemistry. 2019:1-8.
39.         McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiological reviews. 2010;90(4):1337-81.
40.         Parkins AC, Sharpe AH, Orkin SH. Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995;375(6529):318.
41.         Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes & development. 1997;11(22):2996-3006.
42.         Wani MA, Wert SE, Lingrel JB. Lung Kruppel-like factor, a zinc finger transcription factor, is essential for normal lung development. Journal of Biological Chemistry. 1999;274(30):21180-5.
43.         Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen S, et al. The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. Journal of Biological Chemistry. 2002;277(37):34322-8.
44.         Heiskanen MA, Motiani KK, Mari A, Saunavaara V, Eskelinen J-J, Virtanen KA, et al. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia. 2018;61(8):1817-28.
45.         Coyle EF, Jeukendrup AE, Wagenmakers A, Saris W. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. American Journal of Physiology-Endocrinology And Metabolism. 1997;273(2):E268-E75.
46.         Holloszy JO, Kohrt WM. Regulation of carbohydrate and fat metabolism during and after exercise. Annual review of nutrition. 1996;16(1):121-38.
47.         Kim SH, Koh JH, Higashida K, Jung SR, Holloszy JO, Han DH. PGC‐1α mediates a rapid, exercise‐induced downregulation of glycogenolysis in rat skeletal muscle. The Journal of physiology. 2015;593(3):635-43.
48.         Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, et al. Role of Krüppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. Journal of Biological Chemistry. 2005;280(13):12867-75.
49.         Haldar SM, Jeyaraj D, Anand P, Zhu H, Lu Y, Prosdocimo DA, et al. Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation. Proceedings of the National Academy of Sciences. 2012;109(17):6739-44.
50.         Zhang Z-W, Wu C-Y, Li H, Wang N. Expression and functional analyses of Krüppel-like factor 3 in chicken adipose tissue. Bioscience, biotechnology, and biochemistry. 2014;78(4):614-23.
51.         Bell-Anderson KS, Funnell AP, Williams H, Jusoh HM, Scully T, Lim WF, et al. Loss of Krüppel-like factor 3 (KLF3/BKLF) leads to upregulation of the insulin-sensitizing factor adipolin (FAM132A/CTRP12/C1qdc2). Diabetes. 2013;62(8):2728-37.
52.         Dijk W, Ruppert PM, Oost LJ, Kersten S. Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes. Journal of Biological Chemistry. 2018;293(36):14134-45.
53.         Wei Z, Lei X, Seldin MM, Wong GW. Endopeptidase cleavage generates a functionally distinct isoform of C1q/tumor necrosis factor-related protein-12 (CTRP12) with an altered oligomeric state and signaling specificity. Journal of Biological Chemistry. 2012;287(43):35804-14.
54.         Bass J, Turck C, Rouard M, Steiner DF. Furin-mediated processing in the early secretory pathway: sequential cleavage and degradation of misfolded insulin receptors. Proceedings of the National Academy of Sciences. 2000;97(22):11905-9.