مقایسه تأثیر دو نوع برنامه تمرین تناوبی با شدت بالا (HIIT ) بر متابولیسم برخی شاخص‌های پورین نوکلئوتید در مردان جودوکار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار فیزیولوژی ورزشی، گروه علوم ورزشی، دانشکدة ادبیات و علوم انسانی، دانشگاه قم، قم، ایران

2 کارشناس ارشد فیزیولوژی ورزشی، گروه علوم ورزشی، دانشکدة ادبیات و علوم انسانی، دانشگاه قم، قم، ایران

چکیده

شدت ورزش و مدت‌زمان فعالیت ورزشی از پارامترهای مهم در متابولیسم نوکلئوتیدهای پورین است؛ بنابراین پژوهش حاضر باهدف مقایسه پاسخ متابولیسم برخی شاخص‌های پورین نوکلئوتید به دو نوع برنامه تمرین تناوبی با شدت بالا (HIT) در مردان جودوکار انجام شد. در این مطالعه نیمه تجربی تعداد 27 نفر از مردان جودوکار به‌صورت تصادفی در گروه‌های تمرین تناوبی30 ثانیه (9 نفر)، تمرین تناوبی60 ثانیه (9 نفر) و کنترل (9 نفر) قرار گرفتند. برنامه تمرین تناوبی شامل هشت هفته و اجرای دو نوع تمرین تناوبی شدید 30 ثانیه و 60 ثانیه به‌صورت سه جلسه در هفته بود. ن تحلیل داده‌ها با استفاده از آزمون آنالیز واریانس یک‌راهه (ANOVA) و آزمون تی وابسته با سطح معناداری (05/0 P ≤) با استفاده از نرم‌افزار SPSS صورت گرفت.

نتایج بین گروهی آنوا در خصوص مقادیر HGPR، هیپوگزانتین اختلاف معناداری بین گروه تمرین تناوبی30 ثانیه و گروه تمرین تناوبی60 ثانیه در مقایسه با گروه کنترل نشان داد (05/0P≤). هم‌چنین پس از هشت هفته تمرینات تناوبی شدید تفاوت معناداری در مقادیر HGPR، هیپوگزانتین و اسیداوریک بین دو گروه تمرینی 30 ثانیه و 60 ثانیه مشاهده نشد (05/0P>). با توجه به آزمون طی وابسته سطوح HGPRT در هر دو گروه تمرین تناوبی30 ثانیه (P=0/02) و تمرین تناوبی60 ثانیه (P=0/001) از مرحله پیش‌آزمون به پس‌آزمون افزایش معناداری یافت.

درمجموع نتایج پژوهش نشان داد که این دو شیوه تمرین تناوبی شدید 30 و 60 ثانیه ای شاخص‌های چرخه پورین نوکلئوتید را به یک ‌میزان تحت تأثیر قرار می‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison the Effect of Two Types of high Intensive Intervention training Program( HIIT) on Metabolism of Some Purine Nucleotide Indices in Athletes Judo Men

نویسندگان [English]

  • mohsen akbarpour 1
  • mohMohadeseh Davoudiaddeseh 2
  • Zahra samari 2
1 Association professor, Physical Education Department, University of Qom, Qom, Iran.
2 University of Qom, Qom,IRAN
چکیده [English]

Exercise intensity and duration of exercise are important parameters in the metabolism of purine nucleotides Therefore, the aim of this study was to compare the metabolism response of some purine nucleotide indices to two types of high intensity interval training (HIT) in Athletes Judo Men. In this semi-experimental study, of, 27 Athletes Judo Men randomly assigned to 30-s HIT groups (n = 9), 60-s HIIT (N = 9) and control (n = 9). The exercise program consisted of eight weeks and two types of intense 30-s and 60-s training sessions three times a week. Blood samples were collected for pre-test and post-test stages in order to study the variables studied in fasting conditions. Data analysis was performed using one way ANOVA and t-test with a significant level (p ≤ 0.05) and using SPSS software. Results of ANOVA for HGPR , Hypoxanthine showed a significant difference between the 30-s HIIT group and 60-s HIIT group compared to the control group (P≤0.05). Also, after eight weeks of intense intermittent exercise (HIT), no significant difference was observed in the values of HGPR, Hypoxanthine and Uric acid between the 30 and 60 seconds HIIT training groups (P> 0.05). According to the dependent t-test, HGPRT levels increased significantly in both HIIT training groups of 30 seconds (P = 0.02) and 60 seconds (P = 0.001) from pre-test to post-test.

Overall, the results showed that these two methods of Intensive Intervention training similar effect on indicators of purine nucleotide cycle.

کلیدواژه‌ها [English]

  • High intensity interval training
  • HGPR
  • Hypoxanthine
  • Uric acid
  • Judo
  1. Ghojaie M, Barzegar A, Asadzadeh R. The survey of IRFI005 function about removing of intra and extracellular free radicals. scientific journal of ilam university of medical sciences. 2014;22(2):158-66.
  2. Hellsten Y, Skadhauge L, Bangsbo J. Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2004.
  3. Ghanbari-Niaki Hk, Hamedinia,. Comparison of circuit training based on wrestling techniques with wrestling traditional training regarding the effectiveness on purine metabolism. Iranian Journal of Endocrinology abd Metabolism. 2017;18(5):386-401.
  4. Stathis CG, Carey MF, Hayes A, Garnham AP, Snow RJ. Sprint training reduces urinary purine loss following intense exercise in humans. Applied physiology, nutrition, and metabolism. 2006;31(6):702-8.
  5. Westing YH, Ekblom B, Sjödin R. The metabolic relation between hypoxanthine and uric acid in man following maximal short‐distance running. Acta physiologica scandinavica. 1989;137(3):341-5.
  6. Yin C, Ma Z, Li F, Duan C, Yuan Y, Zhu C, et al. Hypoxanthine Induces Muscular ATP Depletion and Fatigue via UCP2. Frontiers in Physiology. 2021;12:241.
  7. Hellsten Y, Sjodin B, Richter E, Bangsbo J. Urate uptake and lowered ATP levels in human muscle after high-intensity intermittent exercise. American Journal of Physiology-Endocrinology And Metabolism. 1998;274(4):E600-E6.
  8. Zieliński J, Krasińska B, Kusy K. Hypoxanthine as a predictor of performance in highly trained athletes. International journal of sports medicine. 2013;34(12):1079-86.
  9. Brault JJ, Terjung RL. Purine salvage to adenine nucleotides in different skeletal muscle fiber types. Journal of Applied Physiology. 2001;91(1):231-8.
  10. Sahlin K, Tonkonogi M, Söderlund K. Plasma hypoxanthine and ammonia in humans during prolonged exercise. European journal of applied physiology and occupational physiology. 1999;80(5):417-22.
  11. Zielinski J, Kusy K. Hypoxanthine: a universal metabolic indicator of training status in competitive sports. Exercise and sport sciences reviews. 2015;43(4):214-21.
  12. Stathis CG, Carey MF, Snow RJ. The influence of allopurinol on urinary purine loss after repeated sprint exercise in man. Metabolism. 2005;54(10):1269-75.
  13. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. International journal of cardiology. 2016;213:8-14.
  14. Stathis C, Febbraio M, Carey M, Snow R. Influence of sprint training on human skeletal muscle purine nucleotide metabolism. Journal of applied physiology. 1994;76(4):1802-9.
  15. Bachero-Mena B, González-Badillo JJ. Mechanical and Metabolic Responses during High-intensity Training in Elite 800-m Runners. International Journal of Sports Medicine. 2021;42(04):350-6.
  16. Pospieszna B, Kusy K, Słomińska EM, Dudzinska W, Ciekot-Sołtysiak M, Zieliński J. The effect of training on erythrocyte energy status and plasma purine metabolites in athletes. Metabolites. 2020;10(1):5.
  17. Domaszewska K, Szewczyk P, Kryściak J, Michalak E, Podgórski T. Purine metabolism in the light of aerobic and anaerobic capacity of female boxers. Central European Journal of Sport Sciences and Medicine. 2020;30:97-106.
  18. Hellsten‐Westing Y, Balsom P, Norman B, Sjodin B. The effect of high‐intensity training on purine metabolism in man. Acta Physiologica Scandinavica. 1993;149(4):405-12.
  19. Zieliński J, Kusy K. Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes. Journal of applied physiology. 2012;112(4):542-51.
  20. Laskowski R. Training loads and physical capacity in female practicing judo. Gdansk: Awfis. 2007;5(6):15.
  21. Borg G. Simple rating for estimation of perceived exertion. Physical work and effort. 1975:39-46.
  22. Lynn B. Fitness testing. Key Topics in Sports Medicine: Routledge; 2006. p. 132-3.
  23. Dudzinska W, Lubkowska A, Dolegowska B, Safranow K, Jakubowska K. Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects. European journal of applied physiology. 2010;110(6):1155-62.
  24. Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet journal of rare diseases. 2007;2(1):1-10.
  25. Ghanbari-Niaki A, Haghshenas-Gatabi R, Fathi R, Saeidi A. The Effects of a Short-Term High-Intensity Interval Training (HIIT) on the Levels of Serum Hypoxanthine-Guanine Phosphoribosyltransferase (HGPRT) Enzyme and Some Variables of Purine Nucleotide Cycle. Annals of Military and Health Sciences Research. 2016;14(3).
  26. Zielinski J, Kusy K, Rychlewski T. Effect of training load structure on purine metabolism in middle-distance runners. Med Sci Sports Exerc. 2011;43(9):1798-807.
  27. Spencer M, Bishop D, Lawrence S. Longitudinal assessment of the effects of field-hockey training on repeated sprint ability. Journal of science and medicine in sport. 2004;7(3):323-34.
  28. Hellsten Y, Richter E, Kiens B, Bangsbo J. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. The Journal of physiology. 1999;520(3):909-20.
  29. Skotnicka E, Baranowska-Bosiacka I, Dudzinska W, Suska M, Nowak R, Krupecki K, et al. The effect of exhaustive exercise on the concentration of purine nucleotides and their metabolites in erythrocytes. Biology of Sport. 2008;25(1):35.
  30. Tullson PC, Whitlock DM, Terjung RL. Adenine nucleotide degradation in slow-twitch red muscle. American Journal of Physiology-Cell Physiology. 1990;258(2):C258-C65.
  31. Shemshaki A, Ghanbari Niaki A, Rajab H, Hedayati M, Salami F. Intense alpine skiing exercise on anti oxidant status of male skiers. Iranian Journal of Endocrinology and Metabolism. 2007;9(3):291-7.
  32. Rankin JW. Role of protein in exercise. Clinics in sports medicine. 1999;18(3):499-511.
  33. Ramezanpour M, Hejazi S, Mottaghy Shahri S, Kianmehr M, MR MS. Comparison the effect of interval, continuous and parallel aerobic exercise on urea, uric acid and creatinine of urine level. The Horizon of Medical Sciences. 2013;19(3):137-41.
  34. Lombardi G, Colombini A, Ricci C, Freschi M, Lippi G, Banfi G. Serum uric acid in top-level alpine skiers over four consecutive competitive seasons. Clinica Chimica Acta. 2010;411(9-10):645-8.
  35. Gerber T, Borg ML, Hayes A, Stathis CG. High-intensity intermittent cycling increases purine loss compared with workload-matched continuous moderate intensity cycling. European journal of applied physiology. 2014;114(7):1513-20.