اثر تمرینات تناوبی و تداومی بر بیان ژن‌های کبدی مربوط به انتقال معکوس کلسترول

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم ورزشی، واحد شیروان، دانشگاه آزاد اسلامی، شیروان، ایران

2 استادیار، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

چکیده

 
دفع کلسترول اضافی از کبد به روده با فعالیت پروتئین‌هایی چون LXRα، LXRβ، RXRα، ABCG5 و ABCG8 صورت می‌گیرد که در پیشگیری از آتروسکلروز مؤثر است. در این تحقیق تأثیر تمرینات کم‌شدت تداومی (LIT) و پرشدت تناوبی (HIT) بر بیان ژن‌های این مواد در رت‌های نر ویستار پس از رژیم پرچرب بررسی شده است. پژوهش حاضر در دو مرحلة چاق کردن (13 هفته) و سپس تمرین (12 هفته) انجام گرفت. گروه‌ها در مرحلة تمرین شامل کنترل، تمرین HIT و تمرین LIT بودند. در پایان تمرینات میزان بیان ژن متغیرهای وابسته بررسی شد. تجزیه‌وتحلیل یافته‌ها نشان داد که میزان بیان ژن همة متغیرها به‌غیر از ABCG8 در گروه‌های تجربی نسبت به گروه کنترل به‌طور معناداری بیشتر بود (05/0P≤). در مورد ABCG8 به‌غیر از تفاوت غیرمعنادار گروه‌های کنترل با تمرین LIT (P>0.05)، تفاوت بقیة گروه‌ها معنادار بود (05/0P≤). به‌طور کلی تمرینات HIT و LIT تأثیر مطلوبی بر بیان ژن‌های کبدی مربوط به انتقال معکوس کلسترول می‌گذارند و تأثیر تمرینات HIT بیشتر از LIT است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Interval and Continuous Training on Liver Genes Expression Related to Reverse Cholesterol Transport

نویسندگان [English]

  • Mohsen Jafari 1
  • sediqeh jalali 2
1 Department of Sport Sciences, Shirvan Branch, Islamic Azad University, Shirvan, Iran
2 Department of Biology, Payam Noor University, , Tehran, Iran
چکیده [English]

 
The excretion of excess cholesterol from liver into ileum is accompanied with the activity of proteins such as LXRα, LXRβ, RXRα, ABCG5 and ABCG8 that influences the prevention of atherosclerosis. In this study, the effect of low intensity continuous training (LIT) and high intensity interval training (HIT) on gene expression of these substances in male Wistar rats after high fat diet was examined.This study was conducted in two steps: fatten (13 weeks) and training (12 weeks). Groups in the training step included control, HIT and LIT. After the training, gene expression of dependent variables was analyzed.Analysis of data showed significant elevation of genes expression in all variables except for ABCG8 in experimental groups compared with the control group (P≤0.05). Regarding ABCG8, except for the insignificant difference between control and LIT groups (P>0.05), the differences of other groups were significant (P≤0.05).Overall, HIT and LIT have beneficial effects on liver genes expression related to reverse cholesterol transport and HIT has greater effect than LIT.

کلیدواژه‌ها [English]

  • Reverse Cholesterol Transport
  • Endurance Training
  • high intensity interval training
  • high fat diet
  • Liver
 
1.            Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):434-41.
2.            Kobiyama K, Saigusa R, Ley K. Vaccination against atherosclerosis. Current opinion in immunology. 2019;59:15-24.
3.            Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochimica Et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2006;1761(7):655-66.
4.            Tada H, Nomura A, Yamagishi M, Kawashiri M-a. First case of sitosterolemia caused by double heterozygous mutations in ABCG5 and ABCG8 genes. Journal of clinical lipidology. 2018;12(5):1164-8. e4.
5.            Maranghi M, Truglio G, Gallo A, Grieco E, Verrienti A, Montali A, et al. A novel splicing mutation in the ABCA1 gene, causing Tangier disease and familial HDL deficiency in a large family. Biochemical and biophysical research communications. 2019;508(2):487-93.
6.            Snip O, Hoekstra M, Zhao Y, Calpe-Berdiel L, Vulve J, Foks A, et al. Reduced systemic inflammation and increased reverse cholesterol transport together drive leukocyte ABCA1-mediated protection against atherosclerosis. Atherosclerosis. 2018;275.
7.            Li-Bao C, Xiao-Hua Y, Chong-Hui J, Ya-Ling T, Xin-Ping O, Ping-Ping H, et al. Probucol Inhibits Atherosclerosis by Regulating ABCA1, SR-B I, ABCG5 and ABCG8 Expression and Anti-inflammatory Effects in Hypercholesterolemic Rabbits. Progress in biochemistry and biophysics. 2015;42(9):866-76.
8.            Oh G-S, Yoon J, Lee GG, Oh WK, Kim S-W. 20 (S)-protopanaxatriol inhibits liver X receptor α-mediated expression of lipogenic genes in hepatocytes. Journal of pharmacological sciences. 2015;128(2):71-7.
9.            Wójcicka G, Jamroz-Wiśniewska A, Horoszewicz K, Bełtowski J. Liver X receptors (LXRs). Part I: Structure, function, regulation of activity, and role in lipid metabolism Receptory wątrobowe X (LXR). Część I: Budowa, funkcja, regulacja aktywności i znaczenie w metabolizmie lipidów. Postepy Hig Med Dosw(online). 2007;61:736-59.
10.         He Q, Pu J, Yuan A, Lau WB, Gao E, Koch WJ, et al. Activation of liver-X-receptor α but not liver-X-receptor β protects against myocardial ischemia/reperfusion injury. Circulation: Heart Failure. 2014;7(6):1032-41.
11.         Albers M, Blume B, Schlueter T, Wright MB, Kober I, Kremoser C, et al. A novel principle for partial agonism of liver X receptor ligands Competitive recruitment of activators and repressors. Journal of Biological Chemistry. 2006;281(8):4920-30.
12.         Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y, et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proceedings of the National Academy of Sciences. 2001;98(11):6027-32.
13.         Wang J-M, Wang D, Tan Y-Y, Zhao G, Ji Z-L. Pioglitazone reduces lipid droplets in cholesterolosis of the gallbladder by increasing ABCA1 and NCEH1 expression. Molecular and cellular biochemistry. 2015;399(1-2):7-15.
14.         Fu Y, Mukhamedova N, Ip S, D’Souza W, Henley KJ, DiTommaso T, et al. ABCA12 regulates ABCA1-dependent cholesterol efflux from macrophages and the development of atherosclerosis. Cell metabolism. 2013;18(2):225-38.
15.         Li AC, Binder CJ, Gutierrez A, Brown KK, Plotkin CR, Pattison JW, et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. The Journal of clinical investigation. 2004;114(11):1564-76.
16.         Castrillo A, Joseph SB, Vaidya SA, Haberland M, Fogelman AM, Cheng G, et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Molecular cell. 2003;12(4):805-16.
17.         Rigamonti E, Helin L, Lestavel S, Mutka A, Lepore M, Fontaine C, et al. Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages. Circulation research. 2005;97(7):682-9.
18.         Mirghani SJ, Peeri M, Yekani OY, Zamani M, Feizolahi F, Nikbin S, et al. Role or Synergistic Interaction of Adenosine and Vitamin D3 Alongside High-Intensity Interval Training and Isocaloric Moderate Intensity Training on Metabolic Parameters: Protocol for an Experimental Study. JMIR research protocols. 2019;8(1):e10753.
19.         Yaghoobpour Yekani O, Azarbayjani M A, Peeri M, Farzanegi P. Effect of type of training on markers of hepatocyte apoptosis in rats fed with high fat diet. Yafte. 2018;19(5):106-116.
20.         Soori R, Choobine S, Akbarnejed A. The effect of eight weeks of high intensity interval training on gene expression of liver X receptors (LXR) in Wistar male rats. Yafte. 2017;19(4).
21.         Baranowski M, Zabielski P, Błachnio‐Zabielska A, Harasiuk D, Górski J. LXR activation prevents exhaustive exercise‐induced hypoglycaemia and spares muscle glycogen but does not enhance running endurance in untrained rats. Acta Physiologica. 2011;201(3):373-9.
22.         Hajighasem A, Farzanegi P, Mazaheri Z, Naghizadeh M, Salehi G. Effects of resveratrol, exercises and their combination on Farnesoid X receptor, Liver X receptor and Sirtuin 1 gene expression and apoptosis in the liver of elderly rats with nonalcoholic fatty liver. Peer J. 2018;6:e5522.
23.         Côté I, Sock ETN, Lévy É, Lavoie J-M. An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training. European journal of nutrition. 2013;52(5):1523-32.
24.         Ghanbari-Niaki A, Abarghooi SG, Gholizadeh M. Heart ATP-Binding Cassette Protein A1 and G1, Peroxisome Proliferator-Activated Receptor-α and Liver X Receptors Genes Expression in Response to Intensive Treadmill Running and Red Crataegus pentaegyna (Sorkh valik) in Male Rats. Zahedan Journal of Research in Medical Sciences. 2015;17(5).
25.         Sahin K, Orhan C, Tuzcu M, Sahin N, Erten F, Juturu V. Capsaicinoids improve consequences of physical activity. Toxicology reports. 2018;5:598-607.
26.         Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiological reviews. 2006;86(2):465-514.
27.         Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proceedings of the National Academy of Sciences. 2004;101(31):11245-50.
28.         Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiological reviews. 2012;92(2):739-89.
29.         Lin G, Bornfeldt KE. Cyclic AMP-specific phosphodiesterase 4 inhibitors promote ABCA1 expression and cholesterol efflux. Biochemical and biophysical research communications. 2002;290(2):663-9.
30.         Khovidhunkit W, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. Endotoxin down-regulates ABCG5 and ABCG8 in mouse liver and ABCA1 and ABCG1 in J774 murine macrophages differential role of LXR. Journal of lipid research. 2003;44(9):1728-36.
31.         DiBlasio-Smith EA, Arai M, Quinet EM, Evans MJ, Kornaga T, Basso MD, et al. Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells. Journal of translational medicine. 2008;6(1):59.
32.         Khovidhunkit W, Kim M-S, Memon RA, Shigenaga JK, Moser AH, Feingold KR, et al. Thematic review series: the pathogenesis of atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. Journal of lipid research. 2004;45(7):1169-96.
33.         Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K. Low-intensity exercise exerts beneficial effects on plasma lipids via PPARgamma. Medicine and science in sports and exercise. 2008;40(7):1263-70.
34.         Ghanbari-Niaki A, Zare-Kookandeh N, Deldar H, Zare-Kookandeh A, Baghaei-Tehrani R. Visceral fat ABCG1, ABCG5 and visfatin gene expression in response to a treadmill running program with or without a liquid Pistachio-atlantica (Bene) extraction in female rats. The Iranian Journal of Cardiac Surgery. 2013;5(2&3):10.
35.         Ghanbari-Niaki A, Zare-Kookandeh N, Zare-Kookandeh A. ABCG5 gene responses to treadmill running with or without administration of Pistachio atlantica in female rats. Iranian journal of basic medical sciences. 2014;17(3):162.
36.         Meissner M, Nijstad N, Kuipers F, Tietge UJ. Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice. Nutrition & metabolism. 2010;7(1):54.
37.         Ngo Sock ET, Farahnak Z, Lavoie J-M. Exercise training decreases gene expression of endo-and xeno-sensors in rat small intestine. Applied Physiology, Nutrition, and Metabolism. 2014;39(10):1098-103.
38.         Ghanbari-Niaki A, Rahmati-Ahmadabad S, Zare-Kookandeh N. ABCG8 gene responses to 8 weeks treadmill running with or without Pistachia atlantica (Baneh) extraction in female rats. International journal of endocrinology and metabolism. 2012;10(4):604.
39.         Mohammadi A, Mirzaei F, Moradi MN, Jamshidi M, Ghiasvand T, Yari R. Effect of flaxseed on serum lipid profile and expression of NPC1L1, ABCG5 and ABCG8 genes in the intestine of diabetic rat. Avicenna Journal of Medical Biochemistry. 2013;1(1):1-6.
40.         Back SS, Kim J, Choi D, Lee ES, Choi SY, Han K. Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor. BMB reports. 2013;46(6):322.
41.         Malik P, Berisha SZ, Santore J, Agatisa-Boyle C, Brubaker G, Smith JD. Zymosan-mediated inflammation impairs in vivo reverse cholesterol transport. Journal of lipid research. 2011;52(5):951-7.
42.         Freeman LA, Kennedy A, Wu J, Bark S, Remaley AT, Santamarina-Fojo S, et al. The orphan nuclear receptor LRH-1 activates the ABCG5/ABCG8 intergenic promoter. Journal of lipid research. 2004;45(7):1197-206.
43.         Fitzgerald ML, Mujawar Z, Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis. 2010;211(2):361-70.
44.         Panousis CG, Zuckerman SH. Interferon-γ induces downregulation of Tangier disease gene (ATP-binding-cassette transporter 1) in macrophage-derived foam cells. Arteriosclerosis, thrombosis, and vascular biology. 2000;20(6):1565-71.