بررسی آثار تمرینات شنا بر سطوح FGF23، &Klotho، هایپرتروفی پاتولوژیک قلبی و عملکرد قلبی در رت‌های نر مبتلا به نارسایی مزمن کلیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکدة تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران

2 استاد، دانشکدة تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران.

3 دانشیار، دانشگاه علوم پزشکی، تهران، ایران.

4 دانشیار، دانشکدة تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران.

چکیده

عوارض قلبی-عروقی از مهم‌ترین عوامل مرگ‌ومیر در بیماران مبتلا به نارسایی کلیه شناخته شده است. هدف از این تحقیق بررسی آثار تمرینات شنا بر سطوح 23FGF و &Klotho  هایپرتروفی پاتولوژیک و عملکرد قلبی در رت‌های نر مبتلا به نارسایی مزمن کلیه است. پژوهش از نوع تجربی است و از طرح پست تست، مقایسه با گروه کنترل استفاده شد و در دانشگاه تهران و مرکز قلب تهران به انجام رسید. 30 موش صحرایی نر ویستار (7-8 هفته) به‌طور تصادفی به سه گروه تمرین، کنترل و شم تقسیم شده و 20 سر از طریق 5/6Nx جراحی شدند. پروتکل به‌صورت تمرینات شنا و 3 جلسه در هفته بود که به 30 دقیقه تا یک ساعت در انتهای پژوهش رسید. تجزیه‌و‌تحلیل داده‌ها بعد از تأیید طبیعی بودن توزیع داده‌ها از طریق آزمون کلموگروف اسمیرنوف، از آزمون تحلیل واریانس یکراهه و آزمون تعقیبی بونفرونی برای بررسی تفاوت بین‌گروهی استفاده شد ( 05/0 P >). تمرین شنا در میزان هایپرتروفی تغییر معنادار ایجاد نکرد، اما در عملکرد قلبی تفاوت معنا‌دار ایجاد شد. کلوتو، فسفر سرم و پاراتیروئید نیز تغییر معنادار داشت. FGF23 با تمرین شنا کاهش یافت، اما تغییرات معنادار نبود. وضعیت کلسیم و ویتامین D سرم بهبود یافت، اما معنادار نبود (05/0P>). تمرین شنا در بیماران کلیوی می‌تواند به وضعیت بهبود مشکلات قلبی- عروقی ایجادشده بر اثر عوارض بیماری تأثیر مثبت بگذارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of swimming exercises on FGF23, & Klotho levels, cardiac pathological hypertrophy and cardiac function of male rats CKD

نویسندگان [English]

  • Zahra Shahsavari 1
  • Rahman Soori 2
  • Shahram Rabbani 3
  • Siroos Choubine 4
  • Sina Rokhsati 1
1 Ph.D. Student, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
2 Professor, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
3 Associate Professor of Medical Sciences, Tehran, Iran
4 Associate Professor, Faculty of Physical Education and Sport Sciences, University of Tehran
چکیده [English]

 The purpose of this study was to determine the effect of swimming training on pathological cardiac hypertrophy, cardiac function, FGF23 and &Klotho of male rats CKD. In this study, 30 male Wistar rats (7-8 week) were randomly divided into three groups: training, control, and sham. The renal disease model was induced in rats by a 5/6 nephrectomy (5/6-NX) procedure. The exercise protocol was administered incrementally, 2 sessions per week for eight weeks. Activities included warm-up and resistance training. Resistance training was a ladder exercise with 3 sets and 6 repetitions with percentages of body weight. One-way ANOVA and Bonferroni statistical methods were used for data analysis. Significance level was considered P <0.05. The results showed that swimming exercise reduced FGF23 and pathological cardiac hypertrophy but the results were not significant.  Plasma levels of Klotho and cardiac function were significantly increased in the training group compared with the control group. Exercise training significantly decreased serum phosphorus and serum parathormon in the Train group. Serum calcium and vitamin D status were improved but were not significant. Overall, the results showed that swimming exercise can have a significant effect on cardiac function and cardiovascular disease indices in chronic Kidney disease.

کلیدواژه‌ها [English]

  • Chronic KidneyDisease
  • Cardiac function
  • FGF23
  • Klotho protein
  • cardiac hypertrophy
  • Swimming exercise
1.            Levey, A.S. and J. Coresh, Chronic kidney disease. The lancet, 2012. 379(9811), p-165-180.
2.            Cozzolino, M., et al., The cardiovascular burden in end-stage renal disease, in Expanded Hemodialysis. 2017, Karger Publishers. p, 44-57.
3. Naranjo M, Lerma EV, Rangaswami J. Cardio-Renal Syndrome: A double edged sword. Disease-a-month: DM. 2017 Apr;63(4):92-100.
4. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J. The parathyroid is a target organ for FGF23 in rats. The Journal of clinical investigation. 2007 Dec 3;117(12):4003-8.
5. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochemical and biophysical research communications. 2010 Jul 30;398(3):513-8.
6. Razzaque MS. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nature Reviews Endocrinology. 2009 Nov;5(11):611-9.
7. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Jüppner H, Wolf M. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. Journal of the American Society of Nephrology. 2005 Jul 1;16(7):2205-15.
8. Palazzuoli A, Masson S, Ronco C, Maisel A. Clinical relevance of biomarkers in heart failure and cardiorenal syndrome: the role of natriuretic peptides and troponin. Heart failure reviews. 2014 Mar;19(2):267-84.
9. Metzinger-Le Meuth V, Burtey S, Maitrias P, Massy ZA, Metzinger L. microRNAs in the pathophysiology of CKD-MBD: Biomarkers and innovative drugs. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2017 Jan 1;1863(1):337-45.
10. Desjardins L, Liabeuf S, Renard C, Lenglet A, Lemke HD, Choukroun G, Drueke TB, Massy ZA. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporosis International. 2012 Jul;23(7):2017-25.
11. Paoli S, Mitsnefes MM. Coronary artery calcification and cardiovascular disease in children with chronic kidney disease. Current opinion in pediatrics. 2014 Apr;26(2):193.
12. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. American Journal of Physiology-Renal Physiology. 2010 Oct;299(4):F882-9.
13. Keshavarzi ZA, Daryanoosh FA, Kooshki Jahromi M, Mohammadi ME. The effect of 12 weeks of aerobic exercise on plasma levels of fibroblast growth factor 23, Angiotensin converting enzyme and left ventricular hypertrophy in hypertensive elderly women. SSU_Journals. 2017 Jun 15;25(3):222-9.
14. Hu MC, Shi M, Gillings N, Flores B, Takahashi M, Kuro-o M, Moe OW. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney international. 2017 May 1;91(5):1104-14.
15. Greenwood SA, Koufaki P, Mercer TH, MacLaughlin HL, Rush R, Lindup H, O’Connor E, Jones C, Hendry BM, Macdougall IC, Cairns HS. Effect of exercise training on estimated GFR, vascular health, and cardiorespiratory fitness in patients with CKD: a pilot randomized controlled trial. American Journal of Kidney Diseases. 2015 Mar 1;65(3):425-34.
16. Castaneda C, Gordon PL, Parker RC, Uhlin KL, Roubenoff R, Levey AS. Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. American Journal of Kidney Diseases. 2004 Apr 1;43(4):607-16.
17. Balakrishnan VS, Rao M, Menon V, Gordon PL, Pilichowska M, Castaneda F, Castaneda-Sceppa C. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clinical Journal of the American Society of Nephrology. 2010 Jun 1;5(6):996-1002.
18. Heiwe S, Clyne N, Tollbäck A, Borg K. Effects of regular resistance training on muscle histopathology and morphometry in elderly patients with chronic kidney disease. American journal of physical medicine & rehabilitation. 2005 Nov 1;84(11):865-74.
19. Moinuddin I, Leehey DJ. A comparison of aerobic exercise and resistance training in patients with and without chronic kidney disease. Advances in chronic kidney disease. 2008 Jan 1;15(1):83-96.
20. Pechter Ü, Ots M, Mesikepp S, Zilmer K, Kullissaar T, Vihalemm T, Zilmer M, Maaroos J. Beneficial effects of water-based exercise in patients with chronic kidney disease. International Journal of Rehabilitation Research. 2003 Jun 1;26(2):153-6.
21. Wei J, Zhang J, Wang L, Cha BJ, Jiang S, Liu R. A new low-nephron CKD model with hypertension, progressive decline of renal function, and enhanced inflammation in C57BL/6 mice. American Journal of Physiology-Renal Physiology. 2018 May 1;314(5):F1008-19.
22. Liu Y, Li J, Yu J, Wang Y, Lu J, Shang EX, Zhu Z, Guo J, Duan J. Disorder of gut amino acids metabolism during CKD progression is related with gut microbiota dysbiosis and metagenome change. Journal of pharmaceutical and biomedical analysis. 2018 Feb 5;149:425-35.
23. Peng CC, Chen KC, Hsieh CL, Peng RY. Swimming exercise prevents fibrogenesis in chronic kidney disease by inhibiting the myofibroblast transdifferentiation. PLoS One. 2012 Jun 27;7(6):e37388.
24. Sahn DJ, DeMaria AN, Kisslo JO, Weyman AF. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. circulation. 1978 Dec;58(6):1072-83.
25. Moe SM, Chen NX, Seifert MF, Sinders RM, Duan D, Chen X, Liang Y, Radcliff JS, White KE, Gattone II VH. A rat model of chronic kidney disease-mineral bone disorder. Kidney international. 2009 Jan 2;75(2):176-84.
26. Moe SM, Chen NX, Seifert MF, Sinders RM, Duan D, Chen X, Liang Y, Radcliff JS, White KE, Gattone II VH. A rat model of chronic kidney disease-mineral bone disorder. Kidney international. 2009 Jan 2;75(2):176-84.
27. Fakhrpour R, Ebrahim K, Ahmadizad S, Khoroshahi HT. Effects of combined training on FGF23 and some vascular calcification risk factors in hemodialysis patients. Medical Journal of Tabriz University of Medical Sciences. 2016 Aug 7;38(3):84-91.
28. Li DJ, Fu H, Zhao T, Ni M, Shen FM. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle. Metabolism. 2016 May 1;65(5):747-56.
29. Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstädt HJ, Meersch M, Unruh M, Zarbock A. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. The Journal of clinical investigation. 2016 Mar 1;126(3):962-74.
30. Pavik I, Jaeger P, Ebner L, Wagner CA, Petzold K, Spichtig D, Poster D, Wüthrich RP, Russmann S, Serra AL. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrology Dialysis Transplantation. 2013 Feb 1;28(2):352-9.
31. Yoshida T, Fujimori T, Nabeshima YI. Mediation of unusually high concentrations of 1, 25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1α-hydroxylase gene. Endocrinology. 2002 Feb 1;143(2):683-9.
32. Maltese G, Karalliedde J. The putative role of the antiageing protein klotho in cardiovascular and renal disease. International journal of hypertension. 2012 Jan 1;2012.
33. Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H, Yasui K, Lee JK, Kamiya K, Kitaichi K, Yamamoto K, Ito M. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation. 2004 Apr 13;109(14):1776-82.
34. Huang CL. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney international. 2010 May 2;77(10):855-60.
35. Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H, van der Eerden BC, van Leeuwen JP, Bindels RJ, Hoenderop JG. Klotho prevents renal calcium loss. Journal of the American Society of Nephrology. 2009 Nov 1;20(11):2371-9.
36. Ramez M, Rajabi H, Ramezani F, Naderi N, Darbandi-Azar A, Nasirinezhad F. The greater effect of high-intensity interval training versus moderate-intensity continuous training on cardioprotection against ischemia-reperfusion injury through Klotho levels and attenuate of myocardial TRPC6 expression. BMC cardiovascular disorders. 2019 Dec;19(1):1-0.