تأثیر تمرین مقاومتی به‌همراه محدودیت جریان خون بر میزان IL-15و فولیستاتین سرمی مردان جوان ورزشکار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه علوم ورزشی، دانشکدة ادبیات و علوم انسانی، دانشگاه ولی‌عصر (عج)، رفسنجان، ایران

2 کارشناس ارشد، گروه فیزیولوژی ورزشی، دانشگاه آزاد اسلامی، کرمان، ایران.

چکیده

روش‌های ایمن و مؤثر برای افزایش حجم عضلانی و بهبود عملکرد ورزشی همواره موردنظر محققان بوده است. محققان شیوه‌ای از تمرینات را معرفی کرده‌اند که در آن، تمرینات مقاومتی همراه با محدودیت جریان خون انجام می‌گیرد. این روش از طریق ایجاد استرس متابولیک، تأثیر محرک تمرینی را بیشتر می‌کند. مایوکاین IL-15 و پروتئین فولیستاتین به عنوان عوامل رشدی و مرتبط با تودة عضلانی شناخته شده‌اند. بنابراین هدف تحقیق، بررسی تأثیر تمرین مقاومتی با محدودیت جریان خون بر میزان IL-15 و فولیستاتین سرمی مردان جوان رزمی‌کار بود. جامعة آماری شامل مردان جوان رزمی‌کار باشگاه‌های شهر کرمان بود که براساس نمونة در دسترس، 20 داوطلب (میانگین سنی 3/2±25 سال، قد 1/5±176 سانتی‌متر و وزن 8/7±2/77 کیلوگرم) از آنها انتخاب شد و به‌صورت تصادفی به دو گروه تقسیم شدند. گروه‌های تحقیق شامل دو گروه تمرین مقاومتی با محدودیت جریان خون (10 نفر) و تمرین مقاومتی بدون محدودیت جریان خون (10 نفر) بودند. آزمودنی‌های تحقیق به مدت 4 هفته و هر هفته 3 جلسه برنامة تمرین مقاومتی با و بدون محدودیت جریان خون را انجام دادند. شدت تمرین در گروه با محدودیت جریان خون برابر 30% و در گروه بدون محدودیت جریان خون برابر 70% یک تکرار بیشینه بود. برای ایجاد محدودیت جریان خون از کاف فشار استفاده شد. در دو مرحلة پیش و پس‌آزمون، غلظت سرمی فولیستاتین و IL-15 به روش الایزا اندازه‌گیری شد. طبیعی بودن توزیع داده‌ها و تجانس واریانس‌ها به‌ترتیب با استفاده از آزمون‌های شاپیرو-ویلک و لون انجام گرفت. به‌منظور تعیین معناداری تفاوت بین متغیرهای تحقیق از آزمون تحلیل کوواریانس یک‌طرفه در سطح معنا‌داری 05/0 P=استفاده شد. یافته‌های تحقیق نشان داد که میزان IL-15 و فولیستاتین در گروه تمرین با محدودیت جریان خون نسبت به گروه تمرین بدون محدودیت جریان خون، افزایش معنا‌داری دارد (به‌ترتیب 001/0P= و 001/0P=). با توجه به این یافته‌ها می‌توان گفت که تمرین مقاومتی با محدودیت جریان خون نسبت به تمرین بدون محدودیت جریان خون، عامل مؤثری در افزایش عوامل هایپرتروفیک (IL-15 و فولیستاتین) است.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of resistance training with BFR on serum IL-15 and folestatin in young male athletes

نویسندگان [English]

  • Abdolreza Kazemi 1
  • Behroz Vakilzadeh 2
1 Department of Physical Education, Faculty of Literature & Humanities, Vali-E-Asr University of Rafsanjan, Iran
2 MSc, Department of Physical Education, Faculty of Letters and Humanities, Islamic Azad University, kerman , Iran
چکیده [English]

Safe and effective methods for increasing muscle mass and improving exercise performance have always been sought by researchers. Researchers have introduced a method of exercise training in which resistance exercises are performed with blood flow restriction. This method increases the effect of exercise stimulus through the creation of metabolic stress. IL-15 and Folestatin are known to be growth factors and related to muscle mass. Therefore, the purpose of this study was to investigate the effect of resistance training with blood flow restriction on the serum levels of IL-15 and Folestatin in young combat men. The research groups consisted of two groups: resistance training with blood flow restriction (10 subjects) and resistance training without blood flow restriction (10 subjects). The subjects completed a four-week resistance training program with or without blood flow restriction. Blood pressure cuff was used to create a blood flow restriction. In both pre and posttest phases, serum levels of Folestatin and IL-15 were measured by ELISA method. To determine the significance of the difference between the variables, one-way covariance analysis was used at the significance level of 0/05. The results showed that IL-15 and Folestatin levels increased significantly in the exercise group with blood flow restriction compared to the exercise group without blood flow restriction (P = 0.001, P = 0.001, respectively). According to these findings, it can be concluded that resistance training with blood flow restriction compared to exercise without blood flow restriction is an effective factor in increasing hypertrophic factors and also improving muscle performance.

کلیدواژه‌ها [English]

  • IL-15
  • Folestatin
  • Resistance training
  • BFR
  1. Wilk M, Tufano JJ, Zajac A. The influence of movement tempo on acute neuromuscular, hormonal, and mechanical responses to resistance exercise—a mini review. The Journal of Strength & Conditioning Research. 2020;34(8):2369-83.
  2. Copeland JL, Consitt LA, Tremblay MS. Hormonal responses to endurance and resistance exercise in females aged 19–69 years. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2002;57(4):B158-B65.
  3. Csapo R, Alegre L. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta‐analysis. Scandinavian journal of medicine & science in sports. 2016;26(9):995-1006.
  4. Abe T, Yasuda T, Midorikawa T, Sato Y, CF K, Inoue K, et al. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU Training Research. 2005;1(1):6-12.
  5. Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength & Conditioning Journal. 2009;31(3):77-84.
  6. Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross-transfer effects of resistance training with blood flow restriction. Medicine+ Science in Sports+ Exercise. 2008;40(2):258.
  7. Shamsaei N. 4 weeks of endurance training prevents the increase of pro-inflammatory cytokines levels in the hippocampus after cerebral ischemia-reperfusion in male rats. 2018.
  8. Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Medicine and science in sports and exercise. 2005;37(7):1144-50.
  9. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Blood flow restricted exercise for athletes: A review of available evidence. Journal of science and medicine in sport. 2016;19(5):360-7.
  10. Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of applied physiology. 2006;101(6):1616-22.
  11. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports medicine. 2015;45(3):313-25.
  12. Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Mattocks KT, Abe T, et al. Blood flow restriction pressure recommendations: a tale of two cuffs. Frontiers in physiology. 2013;4:249.
  13. Loenneke J, Wilson G, Wilson J. A mechanistic approach to blood flow occlusion. International journal of sports medicine. 2010;31(01):1-4.
  14. O'halloran JF. The hypertrophic effects of practical vascular blood flow restriction training. 2014.
  15. Choobineh S, Akbarnejad A, Kakavand V, Yari M. Comparison of growth hormone and insulin-like growth factor-1 responses to high intensity and low intensity resistance training with and without blood flow restriction in adolescent male athletes. Majallah-i pizishki-i Danishgah-i Ulum-i Pizishki va Khadamat-i Bihdashti-i Darmani-i Tabriz. 2019;41(4):40-8.
  16. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of applied physiology. 2000;88(6):2097-106.
  17. Kolnes AJ, Birk JB, Eilertsen E, Stuenæs JT, Wojtaszewski JF, Jensen J. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles. American journal of physiology-endocrinology and metabolism. 2015;308(3):E231-E40.
  18. Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argilés JM. Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Experimental cell research. 2002;280(1):55-63.
  19. Furmanczyk PS, Quinn LS. Interleukin‐15 increases myosin accretion in human skeletal myogenic cultures. Cell biology international. 2003;27(10):845-51.
  20. Pistilli EE, Siu PM, Alway SE. Interleukin-15 responses to aging and unloading-induced skeletal muscle atrophy. American Journal of Physiology-Cell Physiology. 2007;292(4):C1298-C304.
  21. Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, et al. Expression of interleukin‐15 in human skeletal muscle–effect of exercise and muscle fibre type composition. The Journal of physiology. 2007;584(1):305-12.
  22. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. The FEBS journal. 2013;280(17):4294-314.
  23. Dieli-Conwright CM, Spektor TM, Rice JC, Sattler FR, Schroeder ET. Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in postmenopausal women. Journal of applied physiology. 2009;107(5):1381-8.
  24. Aoki MS, Soares AG, Miyabara EH, Baptista IL, Moriscot AS. Expression of genes related to myostatin signaling during rat skeletal muscle longitudinal growth. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 2009;40(6):992-9.
  25. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 2011;152(1):164-71.
  26. Jensky NE, Sims JK, Dieli-Conwright CM, Sattler FR, Rice JC, Schroeder ET. Exercise does not influence myostatin and follistatin mRNA expression in young women. Journal of strength and conditioning research/National Strength & Conditioning Association. 2010;24(2):522.
  27. Bugera EM, Duhamel TA, Peeler JD, Cornish SM. The systemic myokine response of decorin, interleukin-6 (IL-6) and interleukin-15 (IL-15) to an acute bout of blood flow restricted exercise. European Journal of Applied Physiology. 2018;118(12):2679-86.
  28. Shikhi Pir Kohi Z, Zakeri P, Dehkhoda M, Mirakhori Z, Amani-Shalamzari S. The Effect of Six Weeks of Functional training with Blood Flow Restriction on Myostatin to Folistatin Ratio and Physical Fitness in Elderly Men. Journal of Applied Exercise Physiology. 2019;15(30):227-43.
  29. Bagheri R, Rashidlamir A, Attarzadeh Hosseini SR. Effect of resistance training with blood flow restriction on follistatin to myostatin ratio, body composition and anaerobic power of trained-volleyball players. Medical Laboratory Journal. 2018;12(6):28-33.
  30. Corvino RB, Rossiter HB, Loch T, Martins JC, Caputo F. Physiological responses to interval endurance exercise at different levels of blood flow restriction. European journal of applied physiology. 2017;117(1):39-52.
  31. Bassereh A, Ebrahim K, Hovanloo F, Dehghan P. The Effect of Different Pressures of Blood Flow Restriction with Isometric Exercise on EMG Changes.Sport Physiology and Management Investigation. 2016.(In Persian).
  32. Faezeh N, Rahimeh M. The Acute Response of Hemodynamic Parameters to Walking on a Treadmill with Blood Flow Restriction in Sedentary Young Girls. Sport Physiology and Management Investigation. 2018. (In Persian).
  33. Amiri R, Esfarjani F, Marandi S.M. Comparison of Metabolic Some Hormones Response to Resistance Training with ifferent Intensity with and without Blood Flow Restriction in Active Girls. Sport Physiology. 2018. (In Persian).
  34. Mohammadi S, Madizadeh R, Khoshdel AR, Mirzaii-Dizgah I. The effect of blood flow restricted resistance training on serum hormone levels in relation to muscle size and strength in young men. Ebnesina. 2014. (In Persian).
  35. Shimizu R, Hotta K, Yamamoto S, Matsumoto T, Kamiya K, Kato M, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. European journal of applied physiology. 2016;116(4):749-57.
  36. Akbarnejad A, Yari M, Mohamadi M, Rajabi A. Comparison of the Low-Intensity Resistance Exercise with Blood Flow Restriction and High Intensity Resistance Exercise on Serum Levels of VEGF-A In Adolescent Athletes. Journal of Applied Exercise Physiology. 2018;14(27):99-110.
  37. Biglari S, Gaeini AA, Kordi MR, GhardashiAfousi A. The effect of 8 weeks high-intensity interval training on myostatin and follistatin gene expression in gastrocnemius muscle of the rats. Journal of Arak University of Medical Sciences. 2018;21(1):1-10.
  38. Hulmi JJ, Ahtiainen JP, Kaasalainen T, PöLLANEN E, Hakkinen K, Alen M, et al. Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Medicine & Science in Sports & Exercise. 2007;39(2):289-97.
  39. Elliott BT, Herbert P, Sculthorpe N, Grace FM, Stratton D, Hayes LD. Lifelong exercise, but not short‐term high‐intensity interval training, increases GDF 11, a marker of successful aging: a preliminary investigation. Physiological reports. 2017;5(13):e13343.
  40. Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. Journal of Applied Physiology. 2004;97(6):2214-9.
  41. Shamsi MM, Hassan ZM, Quinn LS, Gharakhanlou R, Baghersad L, Mahdavi M. Time course of IL-15 expression after acute resistance exercise in trained rats: effect of diabetes and skeletal muscle phenotype. Endocrine. 2015;49(2):396-403.
  42. Kacin A, Strazar K. Frequent low‐load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scandinavian journal of medicine & science in sports. 2011;21(6):e231-e41.
  43. Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports medicine. 2015;45(2):187-200.
  44. Kim J-s, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. American Journal of Physiology-Endocrinology and Metabolism. 2005;288(6):E1110-E9.
  45. Tortoriello DV, Sidis Y, Holtzman DA, Holmes WE, Schneyer AL. Human follistatin-related protein: a structural homologue of follistatin with nuclear localization. Endocrinology. 2001;142(8):3426-34.
  46. Goto K, Ishii N, Kizuka T, Takamatsu K. The impact of metabolic stress on hormonal responses and muscular adaptations. Medicine and science in sports and exercise. 2005;37(6):955-63.
  47. Pillard F, Laoudj-Chenivesse D, Carnac G, Mercier J, Rami J, Rivière D, et al. Physical activity and sarcopenia. Clinics in geriatric medicine. 2011;27(3):449-70.
  48. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of applied physiology. 2007;103(3):903-10.
  49. Hill EC. Eccentric, but not concentric blood flow restriction resistance training increases muscle strength in the untrained limb. Physical Therapy in Sport. 2020;43:1-7.
  50. Marzetti E, Carter CS, Wohlgemuth SE, Lees HA, Giovannini S, Anderson B, et al. Changes in IL-15 expression and death-receptor apoptotic signaling in rat gastrocnemius muscle with aging and life-long calorie restriction. Mechanisms of ageing and development. 2009;130(4):272-80