تأثیر دو نوع تمرین ورزشی بر عامل رشد و تمایز 11 و تنظیم تودۀ عضلانی رت‌های سالمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، دانشکدۀ علوم انسانی، دانشگاه شاهد، تهران، ایران

2 استادیار، گروه تربیت بدنی و علوم ورزشی، دانشکدۀ علوم انسانی، دانشگاه شاهد، تهران، ایران

چکیده

فاکتور رشد و تمایز 11 (GDF11) پروتئینی با پتانسیل ضدپیری است که احتمال می‌رود در تنظیم رشد عضلۀ اسکلتی ایفای نقش کند. با وجود این اطلاعات کمی در مورد اثرپذیری آن از تمرینات ورزشی تا به امروز موجود است. ازاین‌رو در تحقیق حاضر با استفاده از 24 سر رت نر سالمند تأثیر هشت هفته تمرین مقاومتی و هوازی بر مقادیر GDF11 بافت عضلۀ درشت‌نئی قدامی بررسی شد. تمرین مقاومتی شامل بالا رفتن از نردبان با مقاومت 55 تا 85 درصد ظرفیت حمل بیشینه، 3 جلسه در هفته) و تمرین هوازی از نوع شنا با مقاومتی معادل 3-6 درصد وزن بدن، چهار جلسه در هفته، جلسه‌ای 45 دقیقه بود. از آزمون تحلیل واریانس یکطرفه برای بررسی تفاوت‌های بین‌گروهی استفاده شد (05/0>α). نتایج نشان داد تمرین مقاومتی و هوازی به‌ترتیب موجب افزایش 3/5 و 6/1 درصدی GDF11 عضلانی شد. همچنین تمرین ورزشی مقاومتی و هوازی به‌ترتیب 5/9 و 4 درصد تودۀ عضلۀ درشت‌نئی قدامی را افزایش داد. با این وجود، میزان تغییرات به لحاظ آماری معنادار نبود (05/0<p). بر اساس نتایج تحقیق حاضر، بخصوص نتایج حاصل از تمرینات مقاومتی، به‌نظر می‌رسد GDF11 می‌تواند در تنظیم مثبت تودۀ عضلانی ناشی از فعالیت ورزشی در رت‌های سالمند ایفای نقش کند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Two Exercise Training Methods on Growth and Differentiation Factor 11 (GDF11) and Muscle Mass Regulation in Older Rats

نویسندگان [English]

  • Elahe Darodi 1
  • Esmail Nasiri 2
  • Maryam Khalesi 2
1 M.Sc. of Exercise Physiology, Department of Physical Education and Sport Sciences, Faculty of Humanities, Shahed University, Tehran, Iran.
2 Assistant Professor, Department of Physical Education and Sport Sciences, Faculty of Humanities, Shahed University, Tehran, Iran.
چکیده [English]

Growth and differentiation factor 11 (GDF11) is a protein with anti-aging potential and may play a role in regulation of skeletal muscle mass. However, to date little is known about the effect of exercise training on it. Therefore, in this study, using 24 aged male Wistar rats, the effect of eight-week resistance and aerobic training on GDF11 levels in tibialis anterior (TA) muscle was investigated. The resistance training protocol included 10-15 reps of ladder climbing with a resistance (attached to their tail base) equal to 55-85% of their maximum carrying capacity, 3 sessions per week), and the aerobic training protocol included 30-45 minutes of swimming exercise with a weight equal to 3-6% of their body weight (attached to their tail), 4 sessions per week. One way analysis of variance was used to test the difference between group  (α < 0.05). The result showed that resistance and aerobic training increased TA muscle levels of GDF11 by 5.3% and 1.6%, respectively. Moreover, resistance and aerobic exercise led to an increase of 9.5% and 4% in TA muscle mass, respectively. However, the amount of changes was not statistically significant in either case (p>0.05). Based on the findings of the present study, especially those of resistance training, it seems that GDF11 is involved in exercise training-induced upregulation of skeletal muscle mass in aged rats.

کلیدواژه‌ها [English]

  • Aerobic training
  • Aging
  • GDF11
  • Resistance training
  • Skeletal muscle
  1. Vays V, Vangely I, Eldarov C, Holtze S, Hildebrandt T, Bakeeva L, et al. Progressive reorganization of mitochondrial apparatus in aging skeletal muscle of naked mole rats (Heterocephalus glaber) as revealed by electron microscopy: potential role in continual maintenance of muscle activity. Aging (Albany NY). 2021;13(22):24524.
  2. Becker F, Rudolph KL. Targeting enzyme aging. Science. 2021;371(6528):462-3.
  3. Zhou Y, Ni S, Li C, Song L, Zhang S. Gonadal rejuvenation of mice by GDF11. The journals of gerontology Series A, Biological sciences and medical sciences. 2021.
  4. Añón-Hidalgo J, Catalán V, Rodríguez A, Ramírez B, Silva C, Galofré JC, et al. Circulating GDF11 levels are decreased with age but are unchanged with obesity and type 2 diabetes. Aging (Albany NY). 2019;11(6):1733.
  5. Suh J, Lee Y-S. Similar sequences but dissimilar biological functions of GDF11 and myostatin. Experimental & molecular medicine. 2020;52(10):1673-93.
  6. Tang X, Chen X-F, Wang N-Y, Wang X-M, Liang S-T, Zheng W, et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation. 2017;136(21):2051-67.
  7. Suh J, Kim N-K, Lee S-H, Eom J-H, Lee Y, Park J-C, et al. GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone. Proceedings of the National Academy of Sciences. 2020;117(9):4910-20.
  8. Cai A, Schneider P, Zheng Z-M, Beier JP, Himmler M, Schubert DW, et al. Myogenic Differentiation of Human Myoblasts and Mesenchymal Stromal Stem Cells under GDF11 on Poly-ɛ-Caprolactone-Collagen I-Polyethylene-Nanofibers. 2022.
  9. Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184):649-52.
  10. Bagheri R, Moghadam BH, Church DD, Tinsley GM, Eskandari M, Moghadam BH, et al. The effects of concurrent training order on body composition and serum concentrations of follistatin, myostatin and GDF11 in sarcopenic elderly men. Experimental gerontology. 2020;133:110869.
  11. Larrick JW, Mendelsohn AR. Exercise Partially Rejuvenates Muscle Stem Cells. Rejuvenation Research. 2020;23(3):262-5.
  12. Beasi W, Toffoli L, Pelosi G, Gomes M, Verissimo L, Stocco M, et al. Effects of photobiomodulation and swimming on gene expression in rats with the tibialis anterior muscle injury. Lasers in Medical Science. 2021;36(7):1379-87.
  13. Xiang G, Ying K, Jiang P, Jia M, Sun Y, Li S, et al. Growth differentiation factor 11 induces skeletal muscle atrophy via a STAT3-dependent mechanism in pulmonary arterial hypertension. Skeletal Muscle. 2022;12(1):1-13.
  14. De Domenico E, D’Arcangelo G, Faraoni I, Palmieri M, Tancredi V, Graziani G, et al. Modulation of GDF11 expression and synaptic plasticity by age and training. Oncotarget. 2017;8(35):57991.
  15. Joanisse S, Lim C, McKendry J, Mcleod JC, Stokes T, Phillips SM. Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans. F1000Research. 2020;9.
  16. Moore DR, Kelly RP, Devries MC, Churchward‐Venne TA, Phillips SM, Parise G, et al. Low‐load resistance exercise during inactivity is associated with greater fibre area and satellite cell expression in older skeletal muscle. Journal of cachexia, sarcopenia and muscle. 2018;9(4):747-54.
  17. Moghadam B, Bagheri R, Ashtary-Larky D, Tinsley G, Eskandari M, Wong A, et al. The effects of concurrent training order on satellite cell-related markers, body composition, muscular and cardiorespiratory fitness in older men with sarcopenia. The journal of nutrition, health & aging. 2020;24(7):796-804.
  18. Mena-Montes B, Hernández-Álvarez D, Pedraza-Vázquez G, Toledo-Pérez R, Librado-Osorio R, García-Álvarez JA, et al. Low-Intensity Exercise Routine for a Long Period of Time Prevents Osteosarcopenic Obesity in Sedentary Old Female Rats, by Decreasing Inflammation and Oxidative Stress and Increasing GDF-11. Oxidative Medicine and Cellular Longevity. 2021;2021.
  19. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433(7027):760-4.
  20. Su H-H, Liao J-M, Wang Y-H, Chen K-M, Lin C-W, Lee I-H, et al. Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia–reperfusion injury. Basic Research in Cardiology. 2019;114(3):1-16.
  21. Zhou Y, Song L, Ni S, Zhang Y, Zhang S. Administration of rGDF11 retards the aging process in male mice via action of anti-oxidant system. Biogerontology. 2019;20(4):433-43.
  22. Samadi A, Gaeni AA, Ravasi AA, Khalesi M. The Effect of Progressive Resistance Training on Muscle Mass and Oxidative-Antioxidative Markers in Muscle Tissue of Diabetic Rats. Journal of Sport Biosciences. 2017;9(3):301-14.
  23. de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Søgaard D, Helge JW, et al. Aerobic and resistance exercise training reverses age‐dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiological reports. 2019;7(12):e14139.
  24. Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Frontiers in physiology. 2017;8:713.
  25. Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging cell. 2008;7(1):2-12.