تأثیر تمرینات تناوبی شدید بر بیان ژن‌های کمرین و آدیپسین در بافت کبد مدل حیوانی استئاتوزیس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد فیزیولوژی ورزشی، واحد یادگار امام خمینی (ره) شهر ری، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار، گروه تربیت بدنی و علوم ورزشی، واحد یادگار امام خمینی (ره) شهر ری، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

برخی آدیپوکین‌ها در پاتوژنز بیماری کبد چرب غیرالکلی نقش دارند. آدیپوکین‌ها در بسیاری از فرایندهای متابولیک نقش دارند. هدف از این پژوهش، بررسی تأثیر تمرینات تناوبی شدید بر بیان ژن‌های کمرین و آدیپسین در بافت کبد مدل حیوانی استئاتوزیس بود. در این تحقیق تجربی، 32 سر رت نر نژاد ویستار با وزن 200-250 گرم انتخاب شدند و به‌طور تصادفی در چهار گروه شامل کنترل سالم، کبد چرب، HIIT و کبد چرب+ HIIT قرار گرفتند. رت‌ها با تجویز داروی تتراسایکلین خوراکی با دوز 140میلی‌گرم به ازای هر کیلوگرم از وزن بدن (به‌صورت محلول در 2 میلی‌لیتر آب) به مدت هفت روز مبتلا به کبد چرب شدند. پروتکل HIIT شامل پنج تناوب دودقیقه‌ای دویدن با 85 تا 90 درصد VO2max و به‌دنبال آن 1 دقیقه دویدن در 30-40 درصد VO2max  بین هر وهله، پنج جلسه در هفته و به مدت 5 هفته روی نوار گردان اجرا شد. میزان بیان ژن کمرین و آدیپسین در بافت کبد به روش Real Time PCR اندازه‌گیری شد. داده‌ها با استفاده از آزمون تحلیل واریانس یکطرفه و آزمون تعقیبی توکی در سطح معنا‌داری 05/0 P< تجزیه‌وتحلیل شد. نتایج نشان داد بیان ژن کمرین و آدیپسین بافت کبد در گروه کبد چرب نسبت به گروه کنترل سالم به‌طور معنا‌داری بیشتر بود (001/0P=). بیان ژن کمرین و آدیپسین بافت کبد در گروه HIIT و کبد چرب+ HIIT نسبت به گروه کبد چرب به‌طور معنا‌داری کمتر بود (001/0P=). به‌نظر می‌رسد برنامة تمرین HIIT می‌تواند به بهبود سطوح آدیپوکاین‌ها در بیماری کبد چرب کمک کند، ازاین‌رو این روش تمرینی به‌منظور مزایای آن در بیماری کبد چرب پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of High-intensity Interval Training on Chemrine and Adipsin Gene Expression of liver Tissue in Animal of Steatosis

نویسندگان [English]

  • Samira Najafabadi 1
  • Saeedeh Shadmehri 2
1 M.Sc. Department of Physical Education and Sport Science Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran,
2 Assistant Professor, Department of Physical Education and Sport Science Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

Some adipokines are involved in the pathogenesis of nonalcoholic fatty liver disease. The aim of this study was to investigate the effect of high-intensity interval training on Chemrine and Adipsin gene expression of liver tissue in animal of steatosis. In this experimental study, 32 rats (weighing 200-250 gr) were selected and randomly divided into 4 groups including healthy control, fatty liver, HIIT and fatty liver + HIIT group. Rats were infected with fatty liver by oral tetracycline at a dose of 140 mg/kg (soluble in 2 ml of water) for 7 days. HIIT protocol contained 5 intervals 2 min running session at 85–90% of VO2max followed by 1 min running at 30–40% of VO2max between each session, five sessions per week for 5 weeks. The Chemrine and Adipsin gene expression in the liver tissue samples was measured by Real Time PCR. Data were analyzed by One-way ANOVA and Tukey post hoc tests at the P <0.05. The results showed that the Chemrine and Adipsin gene expression of liver tissue was significantly higher in fatty liver group than the healthy control group (P=0.001). Chemrine and Adipsin gene expression in liver tissue was significantly lower in HIIT and fatty liver + HIIT group’s than the fatty liver group (P=0.001). It seems that the HIIT training program can help improve the levels of adipokines in fatty liver disease, so this training method is recommended for its benefits in fatty liver disease.

کلیدواژه‌ها [English]

  • Adipsin
  • Chemrine
  • Fatty liver
  • High-Intensity Interval Training
  • Rats
  1. Masarone, M., et al., Non alcoholic fatty liver: epidemiology and natural history. Reviews on recent clinical trials, 2014. 9(3): p. 126-133.
  2. Liver, E.A.f.T.S.o.T. and E.A.f.t.S.o. Diabetes, EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Obesity facts, 2016. 9(2): p. 65-90.
  3. Nikroo, H., et al., The effect of diet and exercise on improvement of quality of life in patients with nonalcoholic steatohepatitis. J. Kerman Univ. Med. Sci, 2015. 22(1): p. 61-72.
  4. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.
  5. Buechler, C., et al., Chemerin isoforms and activity in obesity. International journal of molecular sciences, 2019. 20(5): p. 1128.
  6. Sell H, Divoux A, Poitou C,Basdevant A, Bouillot JL, Bedossa P, et al.Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab 2010; 95: 2892– 6.
  7. Sell H, Laurencikiene J, Taube A. Chemerin is a novel adipoctye derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 2009; 58: 2731– 40.
  8. Lock, J., et al., Elevated hepatic chemerin mRNA expression in human non-alcoholic fatty liver disease. Eur J Endocrinol, 2013. 169(5): p. 547-57.
  9. Buechler, C., Chemerin in liver diseases. Endocrinology & Metabolic Syndrome, 2014. 3(4).
  10. Yilmaz, Y., et al., Serum levels of omentin, chemerin and adipsin in patients with biopsy-proven nonalcoholic fatty liver disease. Scandinavian journal of gastroenterology, 2011. 46(1): p. 91-97.
  11. Lo, J.C., et al., Adipsin is an adipokine that improves β cell function in diabetes. Cell, 2014. 158(1): p. 41-53.
  12. Shahini N, Michelsen AE, Nilsson PH, Ekholt K, Gullestad L, Broch K, et al. The alternative complement pathway is dysregulated in pa- tients with chronic heart failure. Sci Rep. 2017; 7: 42532.
  13. Moreno-Navarrete JM, Fernández-Real JM. The complement system is dysfunctional in metabolic disease: evidences in plasma and adipose tissue from obese and insulin resis- tant subjects. Semin Cell Dev Biol. 2019; 85: 164–72.
  14. Rensen SS, Slaats Y, Driessen A, Peutz-Koot- stra CJ, Nijhuis J, Steffensen R, et al. Activa- tion of the complement system in human nonalcoholic fatty liver disease. Hepatology. 2009; 50(6): 1809–17.
  15. Thorp, A. and J.G. Stine, Exercise as Medicine: The Impact of Exercise Training on Nonalcoholic Fatty Liver Disease. Current Hepatology Reports, 2020: p. 1-10.
  16. Austin, P., et al., Aerobic capacity and exercise performance in nonalcoholic fatty liver disease. The Journal of sports medicine and physical fitness, 2019. 59(8): p. 1376-1388.
  17. Glass, O.K., et al., Exercise training as treatment of nonalcoholic fatty liver disease. Journal of Functional Morphology and Kinesiology, 2017. 2(4): p. 35.
  18. Saremi, A., M. Moslehabadi, and M. Parastesh, Effects of twelve-week strength training on serum chemerin., tnf-α and crp level in subjects with the metabolic syndrome. 2011.
  19. Khademosharie, M., et al., Effects of two aerobic training protocols on Vaspin, Chemerin and lipid profile in women with type 2 diabetes. ISMJ, 2014. 17(4): p. 571-581.
  20. Kazemi, A., Effects of 8 Weeks of Aerobic Training on Serum Levels of Chemerin, Omentin-1, and Insulin Resistance in Overweight Women. Qom University of Medical Sciences Journal, 2018. 11(11): p. 68-76.
  21. Jafari, M., M. Mogharnasi, and R. Goldavi, The Effect of 8 Weeks of Resistance Training and a Period of Short-Term Detraining on Plasma Levels of Chemerin and Body Composition in Overweight and Obese Females. Sport Physiology & Management Investigations, 2017. 9(1): p. 9-20.
  22. Naderi, L. and G. Sharifi, Comparison of the effect of 8 weeks concurrent training and green coffee supplementation on serum adipsin and insulin resistance in obese women. Armaghane danesh, 2017. 22(5): p. 623-636.
  23. Azizi, M., Tadib, V., and Behpoor, N. The Effect of Aerobic Exercise Training on Circulating Levels of Adipsin and Insulin Resistance among Obese Type-2 Diabetic Females. Jundishapur Scientific Medical Journal, 2016; 15(4): 433-442
  24. Hamasaki, H., Perspectives on Interval Exercise Interventions for Non-Alcoholic Fatty Liver Disease. Medicines, 2019. 6(3): p. 83.
  25. Sabag A, Barr L, Armour M, Armstrong A, Baker CJ, Twigg SM, Chang D, Hackett DA, Keating SE, George J, Johnson NA. The effect of high-intensity interval training versus moderate-intensity continuous training on liver fat: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2021: dgab795
  26. Hamasaki H. Perspectives on Interval Exercise Interventions for Non-Alcoholic Fatty Liver Disease. Medicines (Basel). 2019;6(3):83.
  27. Shabana, M., et al., Influence of rifampicin and tetracycline administration on some biochemical and histological parameters in albino rats. The Journal of Basic & Applied Zoology, 2012. 65(5): p. 299-308.
  28. Kalaki-Jouybari, F., et al., High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. Archives of physiology and biochemistry, 2018: p. 1-8.
  29. Fathi, R., et al., Effect of resistance training on plasma levels of chemerin and Insulin in two groups of healthy and insulin resistance male rats. Research in Medicine, 2015. 38(4): p. 207-213.
  30. Chakaroun, R., et al., Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism, 2012. 61(5): p. 706-714.
  31. Sell, H., et al., Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes, 2009. 58(12): p. 2731-2740.
  32. Takahashi, M., et al., Chemerin regulates β-cell function in mice. Scientific reports, 2011. 1: p. 123.
  33. Weigert, J., et al., Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clinical endocrinology, 2010. 72(3): p. 342-348.
  34. Lloyd, J.W., et al., Effect of an acute bout of aerobic exercise on chemerin levels in obese adults. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2016. 10(1): p. 37-42.
  35. Holten, M.K., et al., Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes, 2004. 53(2): p. 294-305.
  36. Bruun, J.M., et al., Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. American Journal of Physiology-Endocrinology and Metabolism, 2006. 290(5): p. E961-E967.
  37. Khalafi, M., et al., The effect of two types of exercise on serum chemerin in diabetic male rats. Qom University of Medical Sciences Journal, 2016. 10(8): p. 27-35.
  38. Asad, M.R., S. Kheradmand, and N. Kheradmand, Comparing the Effect of Endurance Exercise and High-Intensity Interval Exercise on Plasma Levels of Chemerin and Insulin Resistance in Obese Male Rats. Journal of Arak University of Medical Sciences, 2019. 22(5): p. 112-123.
  39. Ahmadzadeh, S., Gholami, M., Soheili, S., Ghazalian, F. The Effect of Eight Weeks Aerobic Training and Omega3 Ingestion on the Levels of Adipsin and Insulin Resistance in Overweight and Obese Women. Women’s Health Bulletin, 2021; 8(3): 134-141
  40. Lo J.C., Ljubicic S., Leibiger B., Kern M., Leibiger I.B., Moede T., et al. Adipsin is an adipokine that improves beta cell function in diabetes Cell., 158 (1) (2014), pp. 41-53.
  41. Wang Y., Zheng X., Xie X., Qian W., Zhang L., Ren W. Correlation of increased serum adipsin with increased cardiovascular risks in adult patients with growth hormone deficiency Endocr. Pract. (2019)
  42. HAMIDI, A., Ethnic differences in adipocytokines in severly obese children and adolescents in Singapore, 2009.
  43. Zhou Q, Ge Q, Ding Y, et al. Relationship between serum adipsin and the first phase of glucose‐stimulated insulin secretion in individuals with different glucose tolerance. J Diabetes Investig. 2018;9(5):1128–1134.
  44. Gómez-Banoy, N., et al., Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nature medicine, 2019. 25(11): p. 1739-1747.
  45. Ronti, T., G. Lupattelli, and E. Mannarino, The endocrine function of adipose tissue: an update. Clinical endocrinology, 2006. 64(4): p. 355-365.