پاسخ سطوح سرمی عامل رشد فیبروبلاست-2 و عامل رشد تغییردهندۀ-بتا به تمرین مقاومتی برون‌گرا با و بدون محدودیت جریان خون در مردان جوان فعال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی ( گرایش قلب و عروق ) ، گروه تربیت بدنی و علوم ورزشی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار گروه تربیت بدنی و علوم ورزشی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 استاد دانشگاه شهید بهشتی، دانشکدة تربیت بدنی، تهران، ایران

4 مرکز تحقیقات فیزیولوژی ورزشی، پژوهشکده سبک زندگی، دانشگاه علوم پزشکی، بقیه الله (عج)، تهران، ایران

چکیده

 
مطالعات زیادی پاسخ شاخص‌های سرمی آنژویوژنز را به تمرینات مقاومتی برون‌گرا با محدودیت جریان خون بررسی کرده‌اند. هدف از تحقیق حاضر بررسی پاسخ سطوح سرمی عامل رشد فیبروبلاست-2 (FGF-2) و عامل رشد تغییردهندۀ-بتا (TGF-β) به تمرین مقاومتی برون‌گرا با و بدون محدودیت جریان خون در مردان جوان فعال است. بدین‌منظور، 16مرد سالم با میانگین سنی 85/2 ± 8/27 سال به‌طور تصادفی انتخاب و به دو گروه تمرین مقاومتی برون‌گرای کم‌شدت با BFR و برون‌گرای پرشدت بدون BFR تقسیم شدند. گروه تمرین برون‌گرای پرشدت بدون BFR سه تا پنج دورۀ انقباض برون‌گرای عضلات چهارسر ران را با شدت70 تا 80 درصد حداکثر انقباض ارادی، به‌ترتیب با 30، 15، 15، 15 و 15 تکرار و 45 تا 60 ثانیه استراحت بین دوره‌ها تا مرحلۀ واماندگی انجام دادند. گروه تمرین مقاومتی برون‌گرای کم‌شدت بدون BFR همین پروتکل را با شدت 20 تا 30 درصد حداکثر انقباض ارادی اجرا کردند. پیش و پس از تمرین، به‌منظور سنجش سطوح سرمی دو عامل FGF-2 و TGF-β از ورید بازویی به‌روش الایزا نمونۀ خونی گرفته شد. داده‌ها با استفاده از آزمون‌های آماری تی زوجی و تحلیل واریانس با اندازه‌گیری مکرر در سطح معنا‌داری 05/0 P≤تجزیه‌وتحلیل شدند. یافته‌ها نشان می‌دهد یک جلسه تمرین مقاومتی کم‌شدت با BFR و پرشدت بدون BFR تأثیر معناداری بر سطوح سرمی (FGF-2) و (TGF-β) در مردان جوان فعال ندارد. به‌نظر می‌رسد دو مداخلۀ فعالیت ورزشی مقاومتی به‌کاررفته، تحریک کافی برای تغییر شاخص‌های تحریک‌کننده و مهاری آنژیوژنز را نداشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Response of serum levels of Fibroblast Growth Factor-2 and Transforming Growth Factor-β to Eccentric Resistance Training with and without BFR in Active Young Men

نویسندگان [English]

  • Mohammad Eslamdoust 1
  • Farshad Ghazalian 2
  • Mandana Gholami 2
  • Khosro Ebrahim 3
  • Behzad Bazgir 4
1 PhD Student in Exercise Physiology (cardiovascular branch) , Islamic Azad University, Science and Research Branch, Department of Physical Education, Tehran, Iran
2 Assistant Professor, Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Professor at Shahid Beheshti University, Faculty of Physical Education, Tehran, Iran
4 Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
چکیده [English]

 
Many studies have investigated the response of angiogenesis serum index to eccentric resistance training with blood flow restriction. Therefore, the aim of the present study was to investigate the response of serum levels of fibroblast growth factor (TGFβ) and β - β (FGFβ) growth factor in eccentric resistance training with and without blood flow restriction in young males. 16 healthy males with a mean age of 22.6 ± 7.7 years were randomly selected and divided into two groups of resistance training with low and high intensity training. The exercise group without BFR resulted in the maximum executed 3-5 set of voluntary contraction intensive eccentric resistance exercise, 30, 15, 15, 15, 15 with 45 to 60 second rest interval at 70-80% maximum voluntary contraction, while low intensity resistance exercise with blood flow restriction did the exact previous exercise modality, but with an intensity 20-30% maximum voluntary contraction. The blood sample was taken before and after the exercise intervention from the brachial vein to measure the serum levels of TGF – β and FGF-2 in the with ELISA method. The collected Data analyzed using paired t statistical tests, one way analysis of variance with repeated measurements at P˂0. 05 significant levels. The results show that both resistance training sessions with and without BFR did not change TGF-β FGF-2 in active young men. According to the research findings, it seems that both resistance exercise interventions are not sufficient stimuli to induce enough to change in the stimulatory and inhibitory angiogenesis indicators.

کلیدواژه‌ها [English]

  • Keywords: Active men
  • BFR
  • Transforming growth factor-β (TGF-β)
  • Fibroblast growth factor-2 (FGF-2)
  1. Smith DL, Fernhall B. Advanced cardiovascular exercise physiology: Human Kinetics; 2011.
  2. Ratamess NA, Alvar BA, Evetoch TE, Housh TJ, Ben Kibler W, Kraemer WJ, et al. Progression models in resistance training for healthy adults. Medicine and science in sports and exercise. 2009;41(3):687-708.
  3. Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Mattocks KT, Abe T, et al. Blood flow restriction pressure recommendations: a tale of two cuffs. Frontiers in physiology. 2013;4:249.

.4            Loenneke J. P. , T. R. S., Abe T. (2014). "Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence." Scand J Med Sci Sports 1-8

.5            Neto G.R., Sousa MSC, Costa e Silva GV, Gil ALS, Salles BF, Novaes JS. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clin Physiol Funct Imaging, 2016; 36: 53-59

  1. Fahs CA, Loenneke JP, Rossow LM, Tiebaud RS, Bemben MG. Methodological considerations for blood flow restricted resistance exercise. Journal of Trainology. 2012;1(1):14-22.
  2. Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of applied physiology. 2006;100(5):1460-6.
  3. Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. European journal of applied physiology. 2012;112(8):2903-12.
  4. Iida H, Takano H, Meguro K, Asada K, Oonuma H, Morita T, et al. Hemodynamic and autonomic nervous responses to the restriction of femoral blood flow by KAATSU. International Journal of KAATSU Training Research. 2005;1(2):57-64.
  5. Neto GR, Sousa MS, Costa e Silva GV, Gil AL, Salles BF, Novaes JS. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clinical physiology and functional imaging. 2016;36(1):53-9.
  6. Inagaki Y, Madarame H, Neya M, Ishii N. Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction. European journal of applied physiology. 2011;111(11):2715-21.
  7. Park S, Kim JK, Choi HM, Kim HG, Beekley MD, Nho H. Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. European journal of applied physiology. 2010;109(4):591-600.
  8. Abe T, Yasuda T, Midorikawa T, Sato Y, Inoue K, Koizumi K, et al. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU Training Research. 2005;1(1):6-12.
  9. Lixandrao ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS, Damas F, Libardi CA, Roschel H. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports medicine. 2018 Feb 1;48(2):361-78.
  10. Centner C, Wiegel P, Gollhofer A, König D. Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis. Sports Medicine. 2019 Jan 25;49(1):95-108.
  11. Langston W, Chidlow Jr JH, Booth BA, Barlow SC, Lefer DJ, Patel RP, et al. Regulation of endothelial glutathione by ICAM-1 governs VEGF-A-mediated eNOS activity and angiogenesis. Free Radical Biology and Medicine. 2007;42(5):720-9.
  12. Dono R, Texido G, Dussel R, Ehmke H, Zeller R. Impaired cerebral cortex development and blood pressure regulation in FGF‐2‐deficient mice. The EMBO journal. 1998;17(15):4213-25.
  13. Khadivi Burojeny Z, Rajabi H, Marandi M, Haghjoo S, Khadivi Burojeny A, Noorian E. Effect of resistance training on plasma FGF-2 and Myostatin level in male Wistar rats. Scientific Journals Management System. 2019 Jan 10;16(15):11-22

.19          Schuster N, Krieglstein K. Mechanisms of TGF-β-mediated apoptosis. Cell and tissue research. 2002;307(1):1-14.

.20          Heinemeier K, Langberg H, Olesen JL, Kjaer M. Role of TGF-β1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue. Journal of Applied Physiology. 2003;95(6):2390-7.

.21          Massagué J. TGFβ signalling in context. Nature reviews Molecular cell biology. 2012;13(10):616.

.22          Lessard SJ, Rivas DA, Alves-Wagner AB, Hirshman MF, Gallagher IJ, Constantin-Teodosiu D, et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes. 2013;62(8):2717-27.

.23          Kim E, Gregg LD, Kim L, Sherk VD, Bemben MG, Bemben DA. Hormone responses to an acute bout of low intensity blood flow restricted resistance exercise in college-aged females. Journal of sports science & medicine. 2014;13(1):91.

.24          Nielsen JL, Aagaard P, Bech RD, Nygaard T, Hvid LG, Wernbom M, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low‐load resistance training with blood flow restriction. The Journal of physiology. 2012;590(17):4351-61.

.25          Takano H, Morita T, Iida H, Asada K-i, Kato M, Uno K, et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European journal of applied physiology. 2005;95(1):65-73.

.26          Fujita T, WF B, Kurita K, Sato Y, Abe T. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. International Journal of KAATSU Training Research. 2008;4(1):1-8.

.27          Moriggi Jr R, Di Mauro H, Dias S, Matos J, Urtado M, Neto NCIS, et al. Similar hypotensive responses to resistance exercise with and without blood flow restriction. Biology of sport. 2015;32(4):289.

.28          Wanserski EM. POST EXERCISE BLOOD PRESSURE RESPONSE TO EXERCISE WITH BLOOD FLOW RESTRICTION.

.29          Manini TM, Clark BC. Blood flow restricted exercise and skeletal muscle health. Exercise and sport sciences reviews. 2009;37(2):78-85.

.30          Kumagai K, Kurobe K, Zhong H, Loenneke J, Thiebaud R, Ogita F, et al. Cardiovascular drift during low intensity exercise with leg blood flow restriction. Acta Physiologica Hungarica. 2012;99(4):392-9.

.31     Larkin KA, MacNeil RG, Dirain M, Sandesara B, Manini TM, Buford TW. Blood flow restriction enhances post–resistance exercise angiogenic gene expression. Medicine and science in sports and exercise. 2012;44(11):2077.

.32          Patterson SD, Ferguson RA. Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. European journal of applied physiology. 2010;108(5):1025-33.

.33        Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. European journal of applied physiology. 2002;86(4):308-14.

.34          Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Medicine and science in sports and exercise. 2003;35(7):1203-8.

.35          Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of applied physiology. 2006;101(6):1616-22.

.36          Tanimoto M, Madarame H, Ishii N. Muscle oxygenation and plasma growth hormone concentration during and after resistance exercise: Comparison between “KAATSU” and other types of regimen. International Journal of KAATSU Training Research. 2005;1(2):51-6.

.37          Nocito A, Thöny S, Bächler T, Boutellier U, Wenger RH, Toigo M. Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances. European journal of applied physiology. 2013;113(4):1081-90.